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ABSTRACT 

We set out to design an extended target classification scheme while determining the 

target’s range-and-Doppler location with the use of adaptive waveform for a closed-loop 

cognitive radar platform. To that end, this work is divided into three objectives: 1) in 

support of determining range-Doppler locations, we investigate the ambiguity function of 

the matched waveform called eigenwaveform, 2) in support of target classification, we 

look at an adaptive waveform technique called probability-weighted eigenwaveform 

(PWE) and introduce two new waveforms, and 3) we design an integrated range-Doppler 

map and extended target classification scheme. 

In this work, we show that the fundamental properties of ambiguity function for 

extended targets are different when compared to classical waveforms for point targets. 

We improve on the adaptive waveform called maximum a posteriori PWE and introduce 

two new waveforms called match-filtered PWE and two-stage PWE. We propose an 

integrated range-Doppler map and identification scheme for multiple moving extended 

targets. Performance comparisons in terms of joint probability of identification and 

determining targets’ range-Doppler locations with traditional wideband waveform and 

the three PWE-based waveforms are shown. It is shown that the three PWE-based 

waveforms perform better than the classical wideband waveform. 
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EXECUTIVE SUMMARY 

In this dissertation, we apply the optimum waveform design for a deterministic extended 

target (also known as eigenwaveform [1]) to ambiguity function analysis. Interestingly, 

the fundamental properties (peak and volume) of ambiguity function for a known 

extended target are different when compared to ambiguity functions of classical 

waveforms for a point target [2]. Extended target responses vary greatly from target to 

target, from one aspect angle to another, etc. For the purposes of illustration in this work, 

we form two distinct target types (oscillatory and less or non-oscillatory) and analyze the 

ambiguity function of these two types with the use of eigenwaveforms. Ambiguity 

function depends also if the transmit waveform is one pulse as in continuous wave (CW) 

or multiple pulses as in pulse-Doppler radar systems. For multiple pulse eigenwaveforms, 

increasing pulse repetition frequency results in increasing Doppler sinc-lobes separation 

but increasing pulse repetition frequency results in the reduction of the unambiguous 

range just as in traditional pulse-Doppler systems. However, due to the increased time 

interval of the return (with the use of eigenwaveform) Doppler resolution improves at the 

expense of range resolution. 

Based on optimum waveform design for a deterministic extended target, we 

investigate and expand the notion of the adaptive waveform called probability weighted 

eigenwaveform (PWE) that is used for target recognition with a cognitive radar  

platform [3]. PWE is designed and implemented for non-moving target identification 

problem in a cognitive fashion where the waveform weights of eigenwaveforms 

corresponding to an ensemble of targets to form the transmit waveform is updated via 

previous return (received measurement) and likelihood calculations under the constraint 

of transmit energy or number of transmissions. We propose two new PWE-based 

adaptive waveforms in addition to an existing one. The three adaptive waveforms are: 

maximum a posteriori PWE (MAP-PWE), match-filtered PWE (MF-PWE) and two-stage 

PWE (TS-PWE), which adaptively uses likelihood information from previous and present 

stage to form next waveform in a specific way. It is shown that the three PWE-based 

 xv 



waveforms perform better than the classical wideband waveform. It is also shown that 

MF-PWE and TS-PWE seem to perform better than MAP-PWE.  

Our ultimate goal in this dissertation is to design an integrated algorithm that 

addresses the combined problem of multiple moving target identification while 

determining accurate range and Doppler locations. Combining range-Doppler map 

(RDM) technique with the PWE-based adaptive waveform techniques, we propose an 

integrated range-Doppler map and target identification scheme for multiple moving 

extended targets. The overall probability of correctly locating an extended target in 

range-and-Doppler and identifying target type is clearly a function of received signal-to-

noise ratio, number of transmissions L , PWE schemes and the target responses 

themselves via maximum target eigenvalues. In practice, a priori assumption may come 

from other sensors or some intelligence information. At the end of this work, various 

performance comparisons in terms of overall probability of identification and probability 

of correctly determining range-Doppler locations for the three PWE-based waveforms are 

evaluated against a classical wideband pulse waveform. All the waveforms are used in a 

closed-loop radar system. It is noted the MAP-PWE, MF-PWE, and TS-PWE perform 

better than the wideband waveform.  

 

LIST OF REFERENCES 
 

[1]  M. R. Bell, “Information theory and radar waveform design,” IEEE Trans. 
Information Theory., vol. 39, no. 5, pp. 1578–1597, Sep. 1993. 

[2]  N. Levanon and E. Mozeson, Radar Signals. Hoboken, NJ: John Wiley and Sons, 
2004.  

[3]  R. A. Romero, and N. A. Goodman, “Information-theoretic matched waveform in 
signal dependent interference,” IEEE Radar Conference., Rome, Italy, pp. 1–6, 
May 2008.  

 xvi 



ACKNOWLEDGMENTS 

I would like to sincerely thank my wife, Nicole. It was her enduring support and 

love that has sustained me through this challenging dissertation process.   

I would also like to express my sincere gratitude to my advisor, Professor Ric 

Romero. It was the foundation you helped me build that allowed me to weather the storm 

that is the PhD program, and without your mentorship, I would simply be lost in a virtual 

forest of my own design.   

To my committee members: Professor Tri Ha, Professor Roberto Cristi, Professor 

Weilian Su, and Professor Kyle Lin, your insights and guidance for this dissertation were 

invaluable, and for that I am very grateful.  

 
 

 xvii 



THIS PAGE INTENTIONALLY LEFT BLANK 

 

 xviii 



I. INTRODUCTION 

There are three main related objectives in this work. The first is to investigate the 

application of matched waveform design (also called eigenwaveform) [1] to ambiguity 

function. In other words, we are interested in the target range and Doppler implications of 

the eigenwaveform. The second objective is to extend the adaptive waveform called the 

probability weighted eigenwaveform (PWE) first proposed in [2] and investigate its 

classification performance. As such, we are also interested in identification of extended 

targets. And finally, the third objective (which utilizes the results of the first two) is to 

design an integrated scheme for the combined problem of range-Doppler 

location/detection with extended target type identification with the use of a closed-loop 

radar system employing adaptive waveforms. Such a system is an example of a cognitive 

radar (CR).  

In this work, we utilize adaptive waveforms based on eigenwaveform which is 

also known as SNR-based illumination waveform design [1]. Thus, there is a need to 

evaluate ambiguity functions of radar systems employing eigenwaveforms and their 

properties. We investigated eigenwaveform-based ambiguity functions with the use of 

three types of targets (oscillatory, non-oscillatory, and one based on an actual Boeing 

aircraft). We found that the AF properties (peak and volume) for eigenwaveforms to be 

much larger than that of traditional waveforms for point targets. Unlike traditional 

transmit waveforms whose responses totally dictate the shape of the ambiguity function, 

both matched illumination waveform and extended target response contribute to the 

shape of the ambiguity function. In other words, range and Doppler resolutions are not 

just functions of the transmit waveform but of the target response itself, which makes for 

interesting ambiguity functions. Various range-Doppler trade-offs are made with the use 

of pulsed eigenwaveforms. 

For a traditional radar system where targets of interest are very far in range, a 

good and common model is to assume that the targets are point targets. In additive white 

Gaussian channel, the received waveform is therefore the scaled transmit waveform plus 

noise. The probability of detection is then a function of the received waveform energy 
 1 



regardless of its shape [2]. Moreover, the ambiguity function is dictated by the shape of 

the transmit waveform. Waveform designs in consideration of the ambiguity function for 

point target model has a rich literature [3]–[5] and these waveforms have well known 

properties in terms of range resolution, Doppler resolution, and probability of detection. 

Our interest however is extended targets, i.e., targets that have certain impulse responses 

(i.e., have finite time support) and therefore the returns do not just depend on the transmit 

waveform but rather depend on both the transmit signal and the target’s response via their 

convolution. Given constraint in energy, it is shown in [6] that the eigenwaveform is the 

waveform that maximizes the signal-to-noise ratio in additive white Gaussian or colored 

noise. In signal-dependent interference however, the energy spectral density (ESD) of the 

optimal waveform is derived in [1]. In [1] and [6], the emphasis is to derive optimum 

waveforms for extended targets while in [7]–[9], the emphasis is to apply the adaptive 

waveforms in a target recognition or classification using cognitive radar (CR) [10]. The 

traditional targets in radar field are assumed to be point targets and have a rich literature 

of waveform design and detection theory in [11]–[14]. However, for an extended target 

of our interests, the range resolution, ambiguity function and probability of detection are 

clearly affected by the target’s impulse response. We investigate and evaluate the range 

resolution, ambiguity function, and probability of detection of radar that employs 

eigenwaveform. 

Moreover, we evaluate the target identification performance of PWE-based 

waveforms in target identification problems. To this end, we propose improvements to 

the maximum a posteriori probability weighted eigenwaveform (MAP-PWE) adaptive 

waveform design used in target recognition with a cognitive radar platform. The two 

improvements are called match-filtered PWE (MF-PWE) and two-stage PWE (TS-PWE). 

Various target detection and classification schemes are reported in many articles 

and a few are referenced here for the interested reader [15]–[21]. But our research is to 

investigate the properties of ambiguity function with extended targets and develop an 

integrated detection and classification schemes in a cognitive manner [1], [2], and [7]. 

Some other works use likelihood or correlation characteristic [22]–[26]. However, our 

method is to look at the detection probability improvement with PWE-based 

 2 



transmissions. As had been shown before [1], [7], [8], and [18], the detection and 

classification performance of the adaptive waveforms are better than just employing a 

traditional wideband pulse waveform. 

Recall that our ultimate goal in this dissertation is to design an integrated 

algorithm that addresses the combined problem of multiple moving target identification 

while determining accurate range and Doppler locations. Combining range-Doppler map 

(RDM) technique with the PWE-based adaptive waveform techniques, we propose an 

integrated range-Doppler location and target identification scheme for multiple moving 

extended targets. Various performance comparisons in terms of overall probability of 

identification and probability of correctly determining range-Doppler locations for the 

three PWE-based waveforms are evaluated against a classical wideband pulse waveform. 

All the waveforms are used in a closed-loop radar system. It is noted the MAP-PWE, 

MF-PWE, and TS-PWE perform better than the wideband waveform.  
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II. RANGE RESOLUTION FOR EXTENDED TARGET 
ILLUMINATED BY AN EIGENWAVEFORM 

For a point target illuminated by a basic pulse (one that is not compressed), the 

range resolution is easily derived. Since our target of interest is extended (one that has 

finite extent) then the range resolution provided by a basic pulse including the 

eigenwaveform has to be analyzed. 

A. RANGE RESOLUTION 

For point targets with the use of basic one-pulse waveforms, the minimum (range 

or time delay) separation of two targets is dictated by the length of transmit waveform. It 

is defined as the minimum time separation needed so that the return pulses do not overlap 

each other, i.e., it is the minimum corresponding range separation required such that two 

point targets can be resolved in range. This is easily illustrated in Fig1.a.  

 
Figure 1.  Target range separation setting: (a) target range separation for point targets, 

and (b) target range separation for extended targets. 
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Let xT  be the time duration of the transmit waveform. For the return waveforms 

not to overlap each other, two point targets need to be separated by / 2xT Tρ =  as shown 

in Fig. 1a. For basic pulsed waveform (not chirp or waveforms employing compression), 

the corresponding minimum range in which two target can be resolved is given by 

 / 2,xR cT cTρ ρ= =  (1) 

where c  is the speed of light (in free space). For basic one-pulsed waveforms, minimum 

range separation is usually referred to as range resolution.  

In practice, range resolution can be improved by waveform design (using 

compression techniques) that can potentially increase the bandwidth ( B ) of the 

waveform. As such, range resolution is usually given by 

 / 2 .R cT c Bρ ρ= =  (2) 

Using minimum separation requirement, if the target has a response with duration T  and 

that the eigenwaveform has same time duration ( xT T= ), the falling edge of one target 

return has to be separated by / 2T  from the leading edge of another target return as 

illustrated in Fig. 1b. Thus, the minimum time needed in order for two extended targets to 

be resolved is given by 1.5T Tρ = . Thus, the minimum range separation such that two 

targets can be resolved with the use of the eigenwaveform is given by 

 1.5 .R cT cTρ ρ= =  (3) 

For an extended target, both the eigenwaveform and the target response dictate 

the effective bandwidth of the return signal. As such a simple equation corresponding to 

(2) in terms of bandwidth does not easily apply. This is also the big difference between 

point target and extended target where waveform bandwidth is easily manipulated if a 

target is truly a point target. It is clear that for traditional waveforms (with large 

bandwidths) the resolution promised by (2) will not be realized if used for extended 

targets (especially if a target has a narrowband frequency response). This is because the 

frequency response of the return signal is the result of multiplication of the frequency 

responses of the transmit waveform and target response. Since a practical extended target 
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doesn’t have an idealized flat frequency response like a point target, the frequency 

response of the return signal will surely be different from the frequency response of the 

transmit waveform. As such large bandwidths may be decreased. 

For traditional waveforms with time duration xT  with the point target assumption, 

the minimum Doppler separation such that two targets of different speeds can be resolved 

is usually taken to be the reciprocal of the time duration, i.e., 1/d xf T∆ = . If we use the 

same definition for an extended target with finite extent T , it follows that the Doppler 

resolution is 1/ ( )d xf T T∆ = + . For an eigenwaveform, it is therefore 1/ 2df T∆ = . In 

other words, while the eigenwaveform range resolution suffers due to the increased echo 

return, its Doppler resolution improves due to the length of the return, which accentuates 

the time-frequency resolution trade-off. 

B. REVIEW OF EIGENWAVEFORM  

In Bell’s work [6], he derived the optimum transmit waveform matched to an 

extended target in continuous-time, which is later named eigenwaveform. For transmit 

signal ( )x t  and target response ( )h t , let ( )s t  be the convolution of transmit signal and 

target response. Assume a matched filter in the receiver for signal detection. The output 

of matched filter is 

 2*( ) ( ) ( ) ,dj f ts t s t e dtπχ τ τ
∞

−∞

= −∫  (4) 

where τ  is the time-delay (location) and df  is the Doppler shift of a certain return. The

( )s t  is the convolution result of transmit signal and target response.  

For now, we may assume zero-Doppler since the energy in (4) is not affected by 

the Doppler shift. We may assume unit energy for the extended target in our signal 

models. Any other energy value (point target or otherwise) can be accommodated by 

scaling the energy of target response hE . The eigenfunction max ( )q t  corresponding to the 

maximum eigenvalue maxλ  is used as the transmit waveform, aka eigenwaveform [1].  
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Therefore 

 max( ) ( ),x t q t=  (5) 

and 

 max max max( ) ( ) ( ) ,q t q t L d dλ ρ τ ρ τ
∞

−∞

= −∫  (6) 

where ρ  is a “dummy” variable and ( )L τ  is the autocorrelation function given by 

 2 2( ) ( ) .j fL H f e d fπ ττ
∞

−∞

= ∫  (7) 

By substituting (6) and (7) into (4), sE  which is the energy of convolution of transmit 

signal and target response becomes 

 

max

*
max max max

*
max max max max

( ) ( )

( ) ( ) ,

s

q

E q q d

q q d E

τ λ τ τ

λ τ τ τ λ

∞

−∞

∞

−∞

=

= =

∫

∫
 (8) 

where 
maxqE  is clearly the transmit energy of the eigenwaveform. That is, 

maxx qE E= . 

Compared to traditional point target whose sE is merely xE  due to convolution with delta 

function regardless any target waveform, sE  for an eigenwaveform illuminating an 

extended target is amplified by maxλ . Maximum eigenvalues from various target types are 

different, which means that the energy received is different from target to target. 

To gain an insight into eigenwaveforms, we consider two complex-valued 

extended targets illustrated in Fig. 2, which are arbitrarily generated for the purposes of 

illustration. In the top panel, the magnitudes of the target frequency responses 

(normalized) are shown. Both targets are of unit energy. The magnitudes of the frequency 

responses of eigenwaveform are shown in the middle panel. The bottom panel shows the 

magnitudes of the frequency responses of the return signals.  
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Figure 2.  Top panel: Target magnitudes in frequency response. Middle panel: 

Frequency response magnitudes of transmit signal. Bottom panel: Frequency 
response magnitudes of return signal. 

It is clear from Fig. 2 that, the eigenwaveform distributes most of its energy to the 

target’s most resonant frequency band. We may think of this as the transmit waveform 

capturing the most of the energy of the target signal via the frequency domain. 
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III. PROPERTIES OF THE AMBIGUITY FUNCTION FOR 
EXTENDED TARGETS AND THE EIGENWAVEFORM 

In this section, we apply extended target and eigenwaveform method to the study 

of ambiguity function (AF). In classical ambiguity function studies, the received signal is 

assumed to be a replica of the transmit waveform. In other words, targets are assumed to 

be point targets. Again, AF analysis of various popular waveforms such as pulsed, phase-

coded, and chirp waveforms assuming a point target is mature. Aside from the excellent 

texts cited above, we point out a few select ones such as [27]–[31]. Our interest however 

is extended targets and how various transmit waveforms affect ambiguity functions. More 

specifically, our interest is how both an extended target and its corresponding 

eigenwaveform design affect the ambiguity function. 

In radar application, the ambiguity function features the output of the matched 

filter as a function of Doppler shift and time delay and is given by 

 
2

2 2*( , ) ( ) ( ) d tj f
df x t x t e dtπχ τ τ

∞

−∞

= −∫  (9) 

where ( )x t  is the transmit waveform, df  is the Doppler shift, and τ  is the time delay. 

Notice that this definition where squared-magnitude of the matched filter response is used 

is from [5]. Sometimes the magnitude of the matched filter response is used as in [4]. To 

avoid confusion, we will choose one and use the squared-magnitude definition of the 

ambiguity function. Again, it is clear from (9) that the received signal is the exact replica 

of the transmit waveform (assuming no noise or interference) where the target is assumed 

to be a point target. Unfortunately (9) does not work when the target has a finite extent. 

In the case of an extended target, the ambiguity function is not only a function of transmit 

waveform but is also a function of the target response. If the target response is given by 

( )h t  then the ambiguity function is given by  
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2

2

2*

2

2*

( , )

[ ( )* ( )] [ ( )* ( )]

( ) ( ) ,

d

d

d

j f t

f tj

f

x t h t x t h t e dt

s t s t e dt

π

π

χ τ

τ τ

τ

∞

−∞

∞

−∞

= × − −

= −

∫

∫

 (10) 

where ( )s t  is the convolution return of transmit signal ( )x t  and target response ( )h t . 

It is clear in (10) that for extended targets both transmit waveform and target 

responses dictate the ambiguity function. Our interest is to form the ambiguity function of 

the eigenwaveform given an extended target response and compare that function with 

AFs produced by traditional waveform such as wideband pulse and rectangular pulse 

waveforms. 

A. DISCRETE OR VECTOR SIGNAL MODELING 

Due to the advent of arbitrary waveform generators, modern waveforms are 

designed in discrete-time. Moreover, modern waveform design are usually simulated by 

modern computing that utilizes discrete-frequency techniques. Proper digital-to-analog 

conversion (DAC) easily converts the waveform into practical continuous-time 

waveform. Assuming proper sampling rate through Nyquist theory, we can utilize 

discrete-time and discrete-frequency models to form a discrete-time discrete-frequency 

version of the ambiguity function for extended target, which is given by 

 

21
2 *

0

21
*

0

[ ; ] [ ] [ ]

( [ ]* [ ]) ( [ ]* [ ])

dn

dn

N
f i

n dn n N
i

N
f i

n n N
i

f s i s i W

x i h i x i h i W

χ τ τ

τ τ

−

=

−

=

× − ×

= × − − ×

= ∑

∑
 (11) 

where nτ  is the discrete delay and dnf  is the Doppler spread, x , h  and s  are the discrete 

transmit, target response, and return signals. N  is the length of return vector s , dnf = 0, 

1, ..., 1N − , and 
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2

e .
dn

dn

fjf N
NW

π
=  (12) 

In general the length of dnf  may be desired to be different from N . That extension is 

easily incorporated into (11).  

The peak of the ambiguity function is located at zero-delay and zero-Doppler 

( 0; 0dn nf τ= = ). That is,  

 
2

2
2 2 *

1

2
*

1

[ ; ] [0;0] [ ] [ ]

( [ ]* [ ]) ( [ ]* [ ]) .

N

n dn peak
i

N

s
i

f s i s i

x i h i x i h iE

χ λ χ
=

=

= = ×

= ×=

∑

∑
 (13) 

It turns out that this peak is not constant given an extended target considering various 

transmit waveforms (in which the proof is discussed later). Before going into the 

extended target case, let us examine the classical point target case. If the target is a (non-

fluctuating) point target then h  has an impulse response (i.e., no extent) and thus the 

peak is given by 

 
2

2 2 2 * 2 2
, int

1
[ ; ] [ ] [ ] ,

N

n dn s h h xpeak po
i

f E E x i x i E Eχ λ
=

= = × =∑  (14) 

where hE  is the energy associated with the point target and it is clear from (14) that the 

AF peak is always a constant no matter what kind of waveform is used. In fact for point 

targets (non-fluctuating), the volume under the ambiguity function for all possible 

transmit waveforms is also constant and is given by 2 2
x hE E . If the received point target 

energy and transmit energy are normalized ( 2 21; 1x hE E= = ) then the peak is 1. The 

properties that AF peak and volume are constant regardless of transmit waveform are the 

basis of designing waveforms on how to manipulate ambiguity sidelobes in AF. We will 

show in this work that for an extended target, various AFs arise depending on the 

transmit waveform and the point-target properties do not hold for extended targets. 

Moreover, we discuss how we accurately implemented our own ambiguity function (in 

MATLAB) and how we verified our results in the Appendix.  
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B. PROPERTIES OF THE AMBIGUITY FUNCTION 

1. Property 1: Given an extended target, the peak of the ambiguity function is 
different for different transmit waveforms. 

In other words, the AF peak is not constant for all waveforms i.e., 2
sE  in (13) is 

not constant unlike in the point target case whose peak is constant as given by (14). We 

will now prove Property 1. 

For compact representation, let h  be the complex-valued discrete-time target 

vector of length n , then we can easily form hE=h h  where hE  is the energy of the 

target response and the normalized target response h  clearly has an energy of 1. Let x  be 

an arbitrary transmit signal vector of length n . From [7], we can form a normalized target 

convolution matrix given by 

 

0 0 0
. 0 0

,
. . .. ..
.

h
h

H

h

 
 
 =
 
 
 

 (15) 

where H  is a (2 1)n −  by n  matrix. Thus, any arbitrary transmit waveform x  yields a 

corresponding ambiguity function whose peak is given by  

 

2
2 *

1

22

2 22 2

[ ; ] ( [ ]* [ ]) ( [ ]* [ ])

( * ) ( * ) ( * ) ( * )

( ) ( ) .

N

n dn peak
i

H H
h h

H H H
h h

f x i h i x i h i

E E

E E

χ λ
=

= ×

= × = ×

= × =

∑

x h x h x h x h

Hx Hx x H Hx

 (16) 

It is clear in (16) that various peaks are possible depending on what x  is. In fact, it 

should be clear that the value of the peak depends on the how x  correlates with the target 

response (represented by hE h ). If various peaks are possible, then it is our goal to find 

the ambiguity function (from all possible x ) which yields the maximum peak among all 

possible peaks. 
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 The largest peak can be found by maximizing the AF peak for all possible 

transmit waveforms x  given H  via 

 

2

22 2

max [ ; ]

max [0;0] max ,

H

H H
x H Hx

n dn peakx

H H
hx x

f

E

χ λ

χ

∀

∀ ∀
= =

 (17) 

where we let  

 .R H HH
h =  (18) 

Based on the structure of H , hR  will have the form  

 

2 * *
1 1

2*
1

2*
1

..

1 ,
.. ..

R

i i i i i N
i i i

i i i
i ih

h

i N i i
i i

h h h h h

h h h

E

h h h

+ + −

+

+ −

 
 
 
 

=  
 
 
 
  

∑ ∑ ∑

∑ ∑

∑ ∑

 (19) 

where all the diagonal components have the same energy as h  (which is 1). It can be 

shown with some effort that the matrix hR  is conjugate symmetric, Toeplitz and positive 

definite. That is, 

 .( )R H H H H R
H H HH

h h= = =  (20) 

The hR  matches exactly the definition of sample correlation function from [32] but 

without the normalization. We may refer to hR  as the normalized target response 

autocorrelation matrix. 

Notice that the only design parameter in (16) is the transmit waveform x . In other 

words, maximizing the peak in (16) is equivalent to maximizing the argument H
hx R x , 

which is given by  

 
22m .ax

H
x R xH

hhx
E

∀
 (21) 
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Notice the argument inside the squared magnitude in (21) is an eigenvalue problem [11] 

where the eigenvalue and eigenvector relation is given by 

 h i i iλ=R q q  (22) 

and  

 ,q R q q R q
q q

H
h Hi i

hi i iH
i i

λ = =  (23) 

where iλ  is any eigenvalue of the autocorrelation matrix hR  and iq  is the corresponding 

unit-energy eigenvector of length n . 

Thus, the largest peak of the ambiguity function is achieved by taking the 

eigenvector maxq  corresponding to the largest eigenvalue maxλ  as the transmit waveform. 

In other words, the AF that produces the largest peak is the return that convolves the 

eigenwaveform with the target response. Since maxq  is unit-energy, we need to 

incorporate any transmit energy constraint xE , i.e., the transmit waveform is 

maxxE=x q . Thus, the maximum AF peak given a target response correlation matrix is  

 

22 2

22 2 2 2 2
max max max

max [ ; ] max

,

H H
x R x

q R q

H
hn dn hpe

x

akx x

H
hh h x

f E

E E E E

χ λ

λ

∀ ∀

=

=

=
 (24) 

which says that the maximum peak is given by the squared-product of maximum 

eigenvalue, target energy and transmit energy. Moreover, this maximum peak comes 

from the ambiguity function produced by using the eigenwaveform. 

In conclusion, given any specific target response, the maximum peak value of the 

ambiguity function is attained by taking the eigenwaveform corresponding to maximum 

eigenvalue as transmit signal instead of any arbitrary waveform (and this includes 

traditional pulsed or wideband waveform). The maximum peak value is 2 2 2
max h xE Eλ  as 

opposed to 2
sE  in (14) whose value depends on both how well the transmit waveform 

matches with the target. Notice that a peak of 2 2
h xE E  can be attained by a special 
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waveform. This AF peak is attained by an idealized impulse waveform [7]. In our 

research, we implement the wideband waveform as practical implementation of the 

impulse waveform.  

2. Property 2: Given an extended target, the volume of the ambiguity 
function is different for different transmit waveforms. 

In other words, the AF volume is not constant for all transmit waveforms. We will 

now prove Property 2. The volume of the extended target ambiguity function is given by 

 2[ ; ] .
n dn

dn
AF n n dn

f

fV f
N τ

τ χ τ∆
= ∆ ∑∑  (25) 

It can be shown by Parsavel’s theorem for discrete Fourier transform that 

 
1 12 2*

0 0

1[ ] [ ] [ ; ] .
dn

N N
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i f
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τ χ λ
− −

= =

× − =∑ ∑  (26) 

Thus, the AF volume becomes 

 

1 1 2*

( 1) 0

1 1 2*
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 (27) 

By substituting 1i  for i  and substituting 2i  for ( ni τ− ) where 1i  and 2i  cover the range 

from 0 to ( 1N − ), the total volume of the ambiguity function is given by 

 

2 1

1 2

1 1 2*
1 2

0

1 1 22 * 2
1 2

0 0

2

0
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[ ] [ ]
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∑ ∑  (28) 

where we use (22) and (24) complete the last line of the proof. It is clear that the AF 

volume for extended target is not constant and various waveforms can produce various 

volumes depending on the extended target response as well as the transmit waveform. 
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One of the waveforms we’ll use in our work is the wideband (impulse) waveform. 

An extended target illuminated by the wideband waveform has a volume that is given by 

 2 2 2[ ; ] .
n dn

dn
AF n n dn h x

f

fV f E E
N τ

τ χ τ∆
= ∆ =∑∑  (29) 

This is very interesting since this is the same volume produced if we illuminate a point 

target with any transmit waveform. In other words, for extended targets, only the 

wideband waveform can produce this volume. With the use of the eigenwaveform, the 

largest AF volume possible is given by 

 2 2 2 2
max[ ; ] .

n dn

dn
AF n n dn h x

f

fV f E E
N τ

τ χ τ λ∆
= ∆ =∑∑  (30) 

In other words, the volume is the same value as the largest peak. This volume is 

amplified by 2
maxλ  compared to that of the volume produced by the wideband waveform. 
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IV. AMBIGUITY FUNCTIONS OF ONE-PULSE WAVEFORMS 

A. EIGENWAVEFORM, WIDEBAND WAVEFORM, AND RECTANGULAR 
WAVEFORM 

Traditionally for point targets, a basic pulse (usually shaped) is a common choice 

for transmit signal. For extended targets in this work, we will choose two pulse-type 

waveforms and compare that to the eigenwaveform. The waveforms are: wideband 

waveform (i.e., a very narrow pulse compared to the length of the extended target) and 

rectangular waveform (i.e., a rectangular pulse with duration less or equal to that of the 

extended target). Given a target response, we derive and illustrate ambiguity functions for 

these two waveforms and compare them to the ambiguity function of the eigenwaveform. 

In Fig. 3, we illustrate the finite-length of the three waveforms (wideband, rectangular, 

and eigenwaveform) as they interact with an extended target whose response has finite 

support T .  

 
Figure 3.  One-pulse transmit waveform for extended target: (a) wideband waveform, (b) 

rectangular waveform, and (c) eigenwaveform. 
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Let xT  be the time duration of any transmit waveform. As mentioned earlier, we 

assume the extent of the wideband pulse is much less than the target response duration. 

As such, in Fig. 2a we may idealize the wideband pulse to be an impulse ( ~ 0xT ). For 

rectangular waveform, the pulse width is xT r=  as shown in Fig. 2b. The length r  may 

be thought of as time-on-target (ToT) and the ratio of xT  to T  is defined as the time-on-

target ratio (ToTR) and is given by 

 ToTR .r
T

=  (31) 

In Fig. 2c, the eigenwaveform is shown to have the same length as the target 

duration and thus the ToTR is equal to 1. For a wideband waveform, ToTR = /xT T  

where xT T<< . In the example simulations (in this work) using the wideband waveform, 

/xT T  is 1/31. For this section, we concentrate on one-pulse waveforms to gain insight 

into the ambiguity functions of these three waveforms as they convolve with target 

responses. For illustration in this work, we form two targets with very different frequency 

responses and set both the transmit energy and the target energy to be unit-energy ( 1xE =  

and 1hE = ). We will keep using these two targets for comparison to illustrate the fact that 

unlike in the case of point targets, the target responses play important roles in the 

formation of ambiguity functions. In Fig. 4, we present the magnitudes of frequency 

responses of two different targets (top panel), the corresponding frequency responses of 

the eigenwaveforms (middle panel), and the frequency responses of their return echoes 

(bottom panel). From Fig. 4, we can conclude that choosing the eigenvector with the 

maximum eigenvalue of target autocorrelation matrix as the transmit signal is tantamount 

to choosing a band of frequencies (Fig. 4 middle panel) where the echoes (Fig. 4 bottom 

panel) guarantee the largest returns in terms of magnitudes [1], [7]. Interestingly, the 

magnitudes of the return frequency responses exhibit suppression of the less dominant 

frequency bands of the target response. This turns out to be important since this 

suppression effect will translate to sidelobe suppression in the ambiguity function of 

target returns illuminated by eigenwaveforms. For the purposes of illustration in this 
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work, we form two target types where each represents something practically meaningful. 

Target 1 (a name that we will now use for consistency throughout the work) illustrated in 

Fig. 4 (left top panel) with two dominant bands represents targets with oscillatory 

tendencies in time domain while Target 2 (also to be used consistently herein) in Fig. 4 

(right top panel) with a low-pass shape represents targets exhibiting less or non-

oscillatory tendencies in the time domain. Target 2 is actually a low-pass shaped pulse in 

time domain, which represents a set of target responses that have a strong initial return 

but decays off in time. In other words, we have two target responses that represent 

potential practical target responses and thus we can illustrate how each extended target 

type will respond to the three waveforms we are to investigate. 

 
Figure 4.  Top panel: target frequency response, middle panel: eigenwaveform 

frequency response, and bottom panel: return signal frequency response. 

Moreover, the actual radar range profile of a Boeing 737–500 [33] is converted to 

a practical target response and used an example to generate a practical eigenwaveform 

and corresponding AF. This response is shown in Fig. 5. 
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Figure 5.  Example of a range profile of a Boeing 737500 used as Target 3. The radar 

range profile is at the bottom. From [33]. 

B. EIGENWAVEFORM VS. WIDEBAND AMBIGUITY FUNCTIONS 

A quick and very insightful trade-off comparison is to use an eigenwaveform and 

the wideband waveform as transmit waveforms. In this scenario, we utilize Target 1 ( n  = 

31 samples). In Fig. 6, the ambiguity functions (3D and contour plots) of wideband 

transmit waveform and eigenwaveform are calculated and illustrated.  
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Figure 6.  Ambiguity function and AF contour plots of Target 1 illuminated by 

wideband waveform vs eigenwaveform. Top panel: 3-D view, and bottom panel: 
contour plots. 

It is clear that the ambiguity function of eigenwaveform is more compact in terms 

of Doppler (frequency) response compared the wideband waveform. The cleaner Doppler 

response is the result of two factors. The major factor is the fact that eigenwaveform 

exhibits narrowband characteristics that suppresses the less dominant target frequencies. 

The minor factor is the fact the length of the return echo for the eigenwaveform is about 

twice that of the wideband waveform. Increasing length of transmission results in the 

increase of Doppler resolution. While Doppler resolution was defined earlier in terms of 

time of return echo, a related concept defines Doppler resolution to be half the effective 

mainlobe width in the Doppler domain given a fixed delay (usually when delay is zero). 

This is also true in range resolution where delay (or range) resolution is usually taken to 

be half the effective mainlobe width in the time-delay domain given a fixed Doppler 
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frequency (usually df  = 0). Sidelobe suppression in the ambiguity function is usually a 

desired design characteristic for traditional waveforms for point targets. Here, the 

eigenwaveform has an inherent feature of being able to suppress sidelobes in the Doppler 

domain of the ambiguity function. Since the length of the return for the eigenwaveform is 

approximately twice of that of the wideband waveform (recall Fig. 3 and Fig. 6 bottom 

panel) the mainlobe length (when looking at the delay spread) of the eigenwaveform AF 

is larger compared to the mainlobe length of the wideband AF. In other words, the range 

resolution of the wideband waveform is slightly better than the eigenwaveform. 

However, the eigenwaveform AF contour is clearly much cleaner (due to suppression 

effect and the Doppler resolution effect of longer return) than the wideband waveform. 

Concentrated energy in the origin of the AF is desired in radar waveform design for 

avoiding ambiguities. Also bigger sidelobes can cause a threshold to be crossed, which 

can cause increase in probability of false alarms (PFA). Compared to the wideband 

waveform, the reduction in range resolution is a small price to pay considering better 

Doppler resolution and the qualitative sidelobe reduction. Indeed, it is a small price to 

pay when we consider the peak value of eigenwaveform AF compared to wideband AF 

(since peak value translates to improved detection performance). In Fig. 6 where Target 1 

is used ( 1xE = , 1hE = ), the peak of the eigenwaveform AF is 33.52 ( max 5.79λ = ) while 

the peak of the wideband AF is 1. 

C. RECTANGULAR WAVEFORM AF FOR OSCILLATORY TARGET 
(TARGET 1) 

The ambiguity function from the use of rectangular transmit waveform depends 

on r  relative to T  (i.e., ToTR) in Fig. 3. In this section, we consider two rectangular 

waveforms: a low-ToTR and a high-ToTR. Using a high-ToTR of 0.64, we illustrate in 

Fig. 7: a. AF, b. AF contour, c. Target 1 frequency response (magnitude), d. transmit 

signal frequency response (magnitude), and e) return signal frequency response 

(magnitude). Using a low-ToTR of 0.09, we illustrate in Fig. 8: a. AF, b. AF contour, c. 

Target 1 frequency response (magnitude), d. transmit signal frequency response 

(magnitude), and e. return signal frequency response (magnitude). The AF peak of high-

ToTR in Fig 7 is lower (0.0298) compared to the AF peak (0.2482) of the low-ToTR 
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rectangular waveform. This is because transmit spectrum’s main lobe (sinc-function in 

frequency domain) shown in Fig. 7d barely overlaps the two dominant frequency bands 

of Target 1 (in Fig. 7c) thereby reducing the energy return as shown in Fig. 7e. Notice 

that there are also some subpeaks and sidelobes in AF for the high-ToTR rectangular 

pulse. On the other hand, low ToTR has a better peak value in the ambiguity function but 

a qualitatively worse Doppler response. This is because the low-ToTR rectangular 

waveform has a wider response (in frequency domain) than the high-ToTR rectangular 

waveform and therefore allows for more frequencies to appear. To conclude, given unit-

transmit energy ( 1xE = ) and unit-target energy ( 1hE = ), we note that the AF peak values 

for both rectangular waveforms are both lower than 1. Recall that the wideband 

waveform AF has a peak value of 1 while the eigenwaveform has a peak value of 2
maxλ , 

which is 33.52 for Target 1. In other words, rectangular waveforms (low-pass shape in 

frequency domain) are not good waveforms for Target 1 when it comes to AF peaks. 

 
Figure 7.  Ambiguity function analysis of rectangular waveform with Target 1 (ToTR = 

0.64): (a) ambiguity function, (b) AF contour plot, (c) Target 1 frequency 
response (magnitude), (d) transmit signal frequency response (magnitude), (e) 

return signal frequency response (magnitude). 
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Figure 8.  Ambiguity function analysis of rectangular waveform with Target 1 (ToTR = 

0.09): (a) ambiguity function, (b) AF contour plot, (c) Target 1 frequency 
response (magnitude), (d) transmit signal frequency response (magnitude), (e) 

return signal frequency response (magnitude). 

 

D. RECTANGULAR WAVEFORM AF FOR NON-OSCILLATORY TARGET 
(TARGET 2) 

In this section, we consider a less-oscillatory target or non-oscillatory target in 

which Target 2 is a good example. Again we let 1xE =  and 1hE = . From previous 

example, we have already gained the insight that the wideband AF peak is 1 and that it 

has a slightly better range resolution than the eigenwaveform and rectangular waveform. 

Thus, we are able to make comparison with rectangular waveform AF without generating 

the wideband AF. While the rectangular waveforms (low and high ToTR) do not work 

well for oscillatory targets, the rectangular waveforms actually perform well in terms of 

AF peaks for the non-oscillatory Target 2 compared the wideband waveform. For this 

example scenario, it is instructive to just use one of the rectangular waveforms to 

compare with the eigenwaveform. We choose to look at the high-ToTR rectangular 

waveform AF and compare that to the eigenwaveform AF for Target 2. Using a high-

ToTR of 0.64, we illustrate in Fig. 9: a. AF, b. AF contour, c. Target 2 frequency 

response (magnitude), d. transmit signal frequency response (magnitude), and e. return 
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signal frequency response (magnitude). Using the eigenwaveform, we illustrate in Fig. 

10: a. AF, b. AF contour, c. Target 2 frequency response (magnitude) of target response, 

d) transmit signal frequency response (magnitude) of rectangular waveform, and e. return 

signal frequency response (magnitude). Notice that the high-ToTR rectangular waveform 

AF has a decent peak (232.38). In hindsight, such a result may not be surprising since 

Target 2 is a low-pass shaped response and that a rectangular pulse should return a large 

echo specially if the durations of target and rectangular waveform are comparable. 

Looking at rectangular waveform AF contour in Fig. 9b, the overall sidelobe level is also 

low (of course this is very much influenced by the fact that both target and transmit 

waveform response are concentrated near the zero Herz frequency). Notice however that 

AF peak resulting from the eigenwaveform is still higher (377.45, which is the square of 

max 19.4281λ = ). Looking at the eigenwaveform AF contour in Fig. 10b, the Doppler 

spread is narrower than that of Fig. 9b. In this case of non-oscillatory target, the 

rectangular AF peak is clearly much higher than the wideband waveform AF peak (which 

is 1). 

 
Figure 9.  Ambiguity function analysis of rectangular transmit waveform with Target 2 

(AF peak value = 232.38): (a) ambiguity function, (b) AF contour plot, (c) Target 
2 frequency response (magnitude), (d) transmit signal frequency response 

(magnitude), and (e) return signal frequency response (magnitude). 
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Figure 10.  Ambiguity function analysis of eigenwaveform with Target 2 (AF peak value 

= 377.45): (a) ambiguity function, (b) AF contour plot, (c) Target 2 frequency 
response (magnitude), (d) transmit signal frequency response (magnitude), and (e) 

return signal frequency response (magnitude). 

 

E. PRACTICAL TARGET (BOEING 737–500 RANGE PROFILE) 

We now consider an actual target response shown in Fig. 5 of a Boeing 737–500 

and we generate in Fig. 11 (for eigenwaveform) and Fig. 12 (for wideband waveform) 

the: a. AF, b. AF contour, c. frequency response (magnitude) of Boeing 737–500 profile, 

d) transmit signal frequency response (magnitude) and e. Boeing 737–500 return signal 

frequency response (magnitude). The eigenvalue of Boeing 737–500’s range profile in 

Fig. 5 is 60.173 which leads to a very high peak value 3620.9 in Fig. 11 while Fig. 12 

with wideband waveform can only achieve 1, which is the theoretical result by using 

wideband waveform. Moreover, the eigenwaveform eliminates most Doppler sidelobes 

but doubles the length of return signal. In this example, this type of response is more like 

our Target 2. 
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Figure 11.  Ambiguity function analysis of eigenwaveform with Boeing 737–500: (a) 

ambiguity function, (b) AF contour plot, (c) Boeing 737–500 frequency response 
(magnitude), (d) transmit signal frequency response (magnitude), and (e) return 

signal frequency response (magnitude). 
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Figure 12.  Ambiguity function analysis of wideband waveform with Boeing 737–500: (a) 

ambiguity function, (b) AF contour plot, (c) Boeing 737–500 frequency response 
(magnitude), (d) transmit signal frequency response (magnitude), and (e) return 

signal frequency response (magnitude). 

In conclusion we notice that for oscillatory targets (target responses with 

resonances in particular bands) the wideband waveform tends to result in a larger peak 

than the rectangular waveform. For less oscillatory targets in which the particular Boeing 

737–500 response is an example, the rectangular waveform tends to result in a larger 

peak than the wideband waveform. However, regardless of the target response, the 

eigenwaveform provides the largest AF peak compared to both waveforms. Qualitatively, 

the overall AF sidelobe suppression of the eigenwaveform is clearly superior than both 

waveforms. 
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F. AF ZERO-DELAY AND ZERO DOPPLER CUTS FOR EXTENDED 
TARGETS 

In ambiguity function analysis, two cross sections are usually of interest: the AF 

zero-delay and the zero-Doppler cuts. The zero-delay cut is simply the AF cross-section 

when 0nτ =  and zero-Doppler cut is the AF cross section when 0dnf = . The cross-

sections are important since they usually convey delay (or range) resolution and Doppler 

(or velocity) resolution. For classical waveforms, the zero-delay cut is given by 

 
2

2 *

1
[0; ] [ ] [ ] ,dn

N
f n

dn N
n

X f x n x n W
=

= × ×∑  (32) 

where  
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and [ ]x n  is the transmit signal. Unfortunately, this does not work for extended targets. 

However, recall that we incorporated the fact that the target has finite extent in (16), 

which simplifies to 
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where [ ] [ ]* [ ]s n x n h n=  is the return echo. 

Notice that we can simplify (33) to 
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which states that the AF zero-delay is simply the squared-magnitude of inverse (fast) 

Fourier transform of the squared-magnitude of the transmit waveform - target response 

convolution. 

The corresponding zero-Doppler cut is then the squared-autocorrelation function 

of the return echo (rather than just the transmit signal) and is therefore given by 
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The significance of the AF zero-delay and zero-Doppler cuts are illustrated using 

transmissions with multiple pulses which is the topic of the next section. 
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V. COHERENT MULTIPLE-PULSE TRANSMISSION 

When multiple-pulse transmission or coherent pulse train is used, the ambiguity 

function is the superposition of the ambiguity function of a single transmission with some 

amplitude re-scaling. From [12], the ambiguity function for a pulse train return is given 

by 
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where 2
1χ  is the ambiguity function of a single transmit waveform-target response pair. 

L  is the number of pulses in a transmission and RT  is the separation between pulses or 

pulse repetition interval (PRI). The pulse repetition frequency (PRF) is defined as 

 1 .R
R

f
T

=  (37) 

In pulsed Doppler radar system, one of the key design elements is PRF. In practice, the 

definition of low, medium, and high PRF is truly application driven. This is because the 

PRI (or PRF) dictates the desired or specified unambiguous range. The unambiguous 

range is given by 

 ,
2 2PRF

R
ua

cT cR = =  (38) 

or the unambiguous delay is given by 

 1 .
2 2PRF
R

ua
TT = =  (39) 

When using coherent pulses, the Doppler resolution is basically half the mainlobe 

of the zero-Doppler cut of (36). It is given by 
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In practice, a simple rule of thumb is that medium PRF is a decade larger than low PRF 

and the high PRF is a decade larger than medium PRF but such rule is easily broken 

depending on application. For the convenient illustration of the PRF concepts in our work 

when illuminating an extended target, we will simply define the following: a. high PRF is 

when RT  is four to ten times T  (target duration), b. medium PRF is when RT  is forty 

times T , and c. low PRF is when RT  is a hundred times T . Here our definition of high 

PRF is pretty high. For example, even with 10RT T= , the unambiguous range is 

/ 2 10 / 2 5ua RT T T T= = = . In other words, the unambiguous delay for this PRF can 

accommodate about five target responses. This choice is not motivated by maximizing or 

minimizing the unambiguous range from some specific application but rather to show 

what happens when a (very) high PRF is lowered into medium PRF and then lowered 

again to a low PRF. In other words, we vary the length of RT  to investigate how the 

different PRFs affect the ambiguity function in terms of how the volume inside the AF 

changes and how range and Doppler resolution may be affected as the PRI or PRF is 

changed. As pointed out earlier, the volume of the ambiguity function may be 

manipulated depending on the waveform choice. 

Another parameter of interest in a pulse train is the duty cycle where 

 .x
t x R

R

Td T f
T

= = ×  (41) 

Multiple-pulse transmissions convolving with finite-duration targets resulting in multiple 

echoes are illustrated in: Fig. 13a using wideband waform, Fig. 13b using rectangular 

waveform, and Fig. 13c using eigenwaveform. 
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Figure 13.  Multiple-pulse transmission for extended target setting: (a) wideband 

waveform, (b) rectangular waveform, and (c) eigenwaveform. 

In Fig. 14 and Fig. 15 using 3L =  pulses and 124RT =  delay samples, AF 

contours are shown using the wideband, high-ToTR rectangular, and eigenwaveform 

pulse trains for Target 1 and Target 2 respectively. It is clear all the waveforms 

(rectangular waveform, wideband and eigenwaveform) are very high PRF (AF contours 

are very close in delay spread since 4RT T= ) regardless whether it is Target 1 or 2. In 

Fig. 14 (with Target 1), we can deduce from the AF contour that the very high-PRF 

rectangular waveform yields a slightly cleaner sidelobe suppression response compared 

to the wideband waveform. However, its AF peak (which is 0.0298) is lower than the AF 

wideband waveform peak (which is 1). We can also deduce that the wideband waveform 

has the tightest range (delay) response. The eigenwaveform produces the largest peak 

(which is 33.5), tightest Doppler response, and we can also see that it qualitatively 

produces the cleanest overall sidelobe suppression level. In Fig. 15 with Target 2, all the 

waveforms have low overall sidelobe levels with the eigenwaveform having the tightest 

AF response in Doppler spread. As expected the wideband waveform has the tightest AF 

response in the range (delay) domain but it also has the lowest peak (which is 1). The 
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rectangular waveform has a decent peak (which is 232.38) but the eigenwaveform has the 

largest peak (which is 377.45). 

 
Figure 14.  Target 1 ambiguity function contour plots comparison (L = 3, RT  = 4T): (a) 

wideband waveform, (b) rectangular waveform, and (c) eigenwaveform. 

 
Figure 15.  Target 2 ambiguity function contour plots comparison (L = 3, RT  = 4T): (a) 

wideband waveform, (b) rectangular waveform, and (c) eigenwaveform. 
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A. ZERO-DOPPLER CUT 

Utilizing our high-PRF definition 10RT T= , 3-pulse transmission, and Target 1, 

we illustrate the AF zero-Doppler cuts of the wideband waveform, rectangular waveform, 

and eigenwaveform in Fig. 16. It is clear from Fig. 16 that the range resolution of the 

wideband waveform is slightly better than the other two waveforms as was already 

inferred from the AF contours of Fig. 14. The peak is clearly apparent (and is the largest) 

for the eigenwaveform AF. These are the advantages of looking at another perspective 

via zero-Doppler cuts that may not be evident from the AF contours.  

 
Figure 16.  Zero-Doppler cut of Target 1 AF with various waveforms. Upper panel: 

wideband waveform (L = 3, high PRF), middle panel: rectangular waveform (L = 
3, ToTR=0.64, high PRF), and lower panel: eigenwaveform (L = 3, high PRF). 

Moreover, when eigenwaveform is used, 4RT T=  (in Fig. 14c and Fig. 15c) is the 

smallest value so that the zero-Doppler cut matched filtered pulse returns do not overlap. 

Thus, 4RT T=  is the minimum PRI ( minRT ) such that the AF matched-filtered return 

echoes from the same target do not overlap. If RT  is increased with the use of 

eigenwaveform, then the matched filtered pulse returns start to overlap. Thus, the 
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maximum PRF allowable if no overlap in the eigenwaveform AF zero-Doppler cut is 

desired is given by 

 max
min

1 1 .
4R

R

f
T T

= =  (42) 

The PRI 4RT T=  translates to the actual pulse returns being separated by 2T  

from the same target. This is not to be confused from 1.5T Tρ =  (mentioned in an earlier 

section), which is the minimum time separation required for two targets such that pulse 

returns from the two targets do not overlap (i.e., such that the two targets can be 

resolved). 

It is interesting to note in Fig. 16 that the ratio of each first sidelobe peak to 

mainlobe peak for all three zero-Doppler cuts to be 0.44 for 3L =  scenario. The ratio 

0.44 is the square of (2/3). The ratio of each sidelobe peak to mainlobe peak can be 

formulated for any L  as 
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L
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where iP  is the ratio of thi  side peak amplitude to main peak amplitude. 

Another useful comparison is to illustrate the AF zero-Doppler cuts for various 

PRFs given a particular waveform. Utilizing the eigenwaveform and 3L = , we show the 

zero-Doppler cuts for high PRF, medium PRF, and low PRF in Fig. 17. Just like in 

traditional pulsed-Doppler waveforms, the low PRF yields the best unambiguous range. 

However, just like in pulsed-Doppler waveforms, the choice between low, medium, and 

high PRF has an impact in the Doppler domain, which is considered shortly. 
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Figure 17.  Zero-Doppler cut of Target 2 AF with normalized eigenwaveforms and 

various PRFs. Upper panel: (L = 3, high PRF), middle panel: (L = 3, medium 
PRF), and lower panel: (L = 3, low PRF). 

Also, we explore the impact of increasing the number of pulses ( 1,3,5L = ) given 

a fixed PRF. Again, utilizing the eigenwaveform, we illustrate the AF zero-Doppler cuts 

for Target 1 with high PRF. Of course, 1L =  is an one-pulse waveform which is shown 

to illustrate what is gained by coherent pulse integration when using multiple pulses. 

Since the PRF is fixed, the separation between lobes for 3L =  and 5L =  are the same. 

The main gain of coherent integration is clearly the gain, which is 2L , but at the expense 

of higher first sidelobe-to-main peak ratio (0.44 for 3L =  and 0.64 for 5L = ) as 

predicted by (43). 

In general (when no compression is used), the range resolution depends on 

resulting extent of the convolution of the transmit waveform and target response. In our 

work, the wideband waveform has a slightly better range resolution than the 

eigenwaveform or rectangular waveform due to its narrow time extent. For 

eigenwaveform, there is a lower limit of 4RT T=  for matched filtered echoes not to 

overlap in AF’s range (delay) domain. Increasing L  increases coherent integration gain 

while sacrificing sidelobe peak to main peak ratio. Increasing RT  (which translates to 
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lowering of PRF) increases unambiguous range and its impact on Doppler domain is 

covered in next section. 

 

 
Figure 18.  Zero-Doppler cut of Target 1 AF with un-normalized eigenwaveforms and 

various L. Upper panel: (L = 1, high PRF), middle panel: (L = 3, high PRF), and 
lower panel: (L = 5, high PRF). 

B. ZERO-DELAY CUT 

The zero-delay cut shows the AF Doppler spread when the delay is zero. At times, 

the zero-delay cut offers a perspective that is not quite apparent from an AF contour. 

From [5] and [12], we realize that the width of the main lobe is decreased (i.e., Doppler 

resolution improvement) by increasing the number of pulses in a transmission by 

observing the AF zero-delay cut, which is given by 
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Employing the eigenwaveform, we illustrate in Fig. 19 the AF zero-delay cuts for Target 

1 and Target 2 with 1,3,5L =  using medium PRF with 40RT T= . We include 1L =  to 

remind us the AF ( 2[0; ]dnfχ ) corresponding to 1L =  serves as the envelope as dictated 

by (33). For traditional waveforms for point targets, the zero-delay cut is purely a 

 40 



function of the transmit waveform. From Fig. 19, it is clear that extended target AF zero-

delay cuts differ from target to target. Notice that the zero-Doppler cut is the squared 

multiplication of 1L =  zero-Doppler cut with a sinc-train. The frequency separation of 

the sinc-lobes is dictated by 1/ RT  and the half width of the main lobe is given by 

 ,
1

L d
R

BW f
LT ρ= =  (45) 

which is also considered as the Doppler resolution. However, in (44) notice that the 

separation of the sinc-lobes is also a function of RT  and L . In other words, Doppler 

separation (to avoid ambiguity) is also a function of RT  and L . Thus, by varying RT  and 

L , we can improve (or degrade) Doppler resolution and change the frequency separation 

of the sinc-lobes. For example, we illustrate in Fig. 20 the eigenwaveform AF zero-delay 

cuts for Target 1 and Target 2 with 1,3,L = and 5 but now using high PRF (smaller RT ). It 

is clear that the higher PRF (which is lower RT ) has wider separation but poorer 

resolution since the bandwidth (45) is increased by decreasing RT . Thus, to maintain the 

same bandwidth or Doppler resolution in (45) while decreasing RT  (increasing sinc-lobe 

separation), it is necessary to increase L . In other words, Doppler resolution is dictated 

by the length of total transmission x RT LT=  as observed earlier. 
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Figure 19.  Zero-delay cut comparison with single, three, and five retransmissions with 

low PRF using the eigenwaveform. 

 

 
Figure 20.  Zero-delay cut comparison with single, three, and five retransmissions with 

high PRF using the eigenwaveform. 
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C. RANGE AND DOPPLER RESOLUTION TRADE-OFF 

It is now clear there is an inherent trade-off between range and Doppler resolution 

by varying the PRF (and L ) of multiple pulse transmission of eigenwaveforms (or other 

waveforms for that matter) for extended targets. To illustrate the range and Doppler 

trade-off that continue to exist even for multiple-pulse waveform for extended targets, we 

employ a high PRF and a low PRF eigenwaveform on Target 1 and show the 

corresponding zero-Doppler cuts in Fig. 21a and Fig. 21c, respectively, and zero-delay 

cuts in Fig. 21b and Fig. 21d with various L  given a constant transmit energy constraint 

and a constant total length constraint (i.e., xE  and RLT  is constant). From Fig. 21a and 

Fig. 21c, it is clear that the range resolution is the same since the pulse width remains the 

same; the unambiguous range is worse for the high PRF than low PRF. From Fig. 21b 

and Fig. 21d, the Doppler resolution is the same since RLT  is constant but the sinc-lobe 

separation is larger for the high PRF than low PRF. 

In summary, range resolution and Doppler resolution depend on the type of 

transmit waveform and transmit signal length. For multiple pulse eigenwaveforms, 

increasing PRF (decreasing RT ) results in increasing Doppler sinc-lobes separation but 

increasing PRF results reducing the unambiguous range. When larger L  is used, Doppler 

resolution may improve but larger L  results in more sidelobes, which results in 

sacrificing sidelobe peak to mainlobe peak ratio. It is a classical trade-off where a 

specific application dictates the right choice for a system. But we should mention the fact 

that the narrowband nature of the eigenwaveform (as opposed to the wideband 

waveform) helps in the reduction of the sinc-lobe peaks. 
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Figure 21.  PRF and pulses number comparison with eigenwaveform: (a) zero-Doppler 

cut (L = 30, high PRF), (b) zero-delay cut (L = 30, high PRF), (c) zero-Doppler 
cut (L = 3, low PRF), and (d) zero-delay cut (L = 3, low PRF). 
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VI. DETECTION PROBABILITY AND RANGE-DOPPLER MAP 

In this section we investigate the probability of detection of various waveforms 

such eigenwaveform, rectangular waveform and wideband waveform. We can assume the 

target to have zero Doppler and its extension to the generalized case is straightforward.  

A. DETECTION PROBABILITY OF BASIC ONE-PULSE WAVEFORMS 

Let h  be the complex-valued target response and w  be the complex valued white 

Gaussian noise in the receiver with a sample variance of 2σ . Let s  be the convolution of 

transmit waveform x  and h . Then the detection hypotheses are given by 

 0

1

:
:

y w
y s w Hx w

H
H

=
= + = +

 (46) 

where H  is the target convolution matrix corresponding to h . The decision statistic 

using matched filter theory for a fixed threshold γ  is 

 ( ) Re{ } Re{ }.y y s y HxH HT = =  (47) 

When the wideband waveform is used, the detection probability [18] given a fixed false 

alarm probability (PFA) is given by 

 1
2

2( ( ) ))x h
D FA

E EP Q Q P
σ

−= −  (48) 

 1( ( ) 2 TNR )),FA xQ Q P E−= −  (49) 

where 2TNR /hE σ=  (received target-to-noise ratio) and Q  function is the tail 

probability of the standard normal distribution. Alternatively, (22) can be given as 

 1( ( ) 2 SNR )),D FA hP Q Q P E−= −  (50) 

where 2SNR /xE σ=  (transmit signal-to-noise ratio). In other words, DP  is a function of 

both transmit energy and received target energy along with the noise variance. A more 
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compact version of (48), which resembles detection probability of traditional matched 

filter analysis [19] is 

 1
s( ( ) 2E )),D FAP Q Q P NR−= −  (51) 

where 2
sE NR /x hE E σ=  where sE  specifically means return (echo) energy using the 

wideband waveform. It can be shown [7] that the detection probability with the use of 

eigenwaveform is given by 
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 (52) 

Notice that performance improvement with the use of eigenwaveform compared to the 

wideband (impulse) waveform given a fixed PFA by comparing (25) and (26) where maxλ  

effectively amplifies the sE NR  in (51). 

For any arbitrary waveform (rectangular waveform included), it can be shown that 

the generalized detection probability is given by  
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 (53) 

 

where x  and hR  are normalized transmit waveform and target response autocorrelation 

matrix. It is intuitive to conclude that the value of (
H

hx R x ) may vary from close to zero 

(since hR  is positive definite) to maxλ . As a consequence, the detection performance 
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pretty much depends on the how good/bad the transmit waveform matches target 

response’s autocorrelation matrix. Thus, if we want to compare detection probabilities of 

arbitrary waveforms, they have to be calculated via (53) and only then we can tell if it is 

greater or less than the detection probability of the wideband impulse waveform that is 

given in (48). In other words, stating what the transmit energy is not enough to know the 

detection probability of an arbitrary waveform. Its correlation with the target dictates the 

total return energy. The eigenwaveform ensures the maximum detection probability since 

the term 
H

hx R x  inside the square root in (53) is maximized which yields the detection 

probability in (52). The detection performance curves for various waveforms illuminating 

Target 1 and Target 2 are shown in Fig. 22 and Fig. 23 given a fixed TNR (target-to-

noise energy ratio) for various false alarm probabilities ( FAP ). Considering Fig. 22, the 

performance of the eigenwaveform is superior to rectangular and wideband waveforms 

(given a fixed FAP ) as expected. For example, FAP =0.01 and DP =0.9, the eigenwaveform 

advantage over the wideband waveform is about 7.6 dB (which makes sense since this is 

about equal to 10log( maxλ ). What’s more incredible however (for oscillatory Target 1) is 

that the eigenwaveform with a stringent requirement of FAP = 410−  still outperforms both 

the wideband waveform and the rectangular waveform with a looser requirement of 210−  

(for DP > 0.1)! In Fig. 23 where Target 2 is considered, the performance curve for 

eigenwaveform still is the best compared to rectangular waveform and wideband 

waveform given a fixed FAP . However, as can be inferred from the ambiguity functions 

previously studied, the detection performance of the rectangular waveform is much better 

than the wideband waveform (for the non-oscillatory Target 2). This reinforces the notion 

that was stated earlier. We know that the eigenwaveform yields the best detection 

performance but detection performance of other waveforms have to be calculated via (53) 

such that performance comparison (in terms of detection) between waveforms can be 

made. Finally, the detection performance comparison adds the needed final dimension to 

the range-Doppler trade-off when considering various waveforms. In other words, 

systems which are noise-limited may opt for the eigenwaveform with a slight hit on range 

resolution. Other systems which may not be noise-limited may opt for other waveforms if 
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range resolution takes precedence (but with possibly substantial cost in detection 

performance).  

 
Figure 22.  Target 1 detection probability comparison of wideband waveform, rectangular 

waveform (ToTR = 0.64) and eigenwaveform (TNR = 0dB). 

 
Figure 23.  Target 2 detection probability comparison of wideband waveform, rectangular 

waveform (ToTR = 0.64) and eigenwaveform (TNR = 0dB). 

 48 



B. DETECTION PROBABILITY OF COHERENT MULTIPLE-PULSE 
TRANSMISSION AND RANGE DOPPLER MAP APPLICATION 

When moving targets are present, one of the ambiguity function application is the 

range-Doppler map (RDM) which significantly demonstrates the benefit of using 

eigenwaveform for extended targets. Assume L  pulses are sent and that the return echo 

is received. Any target detected may be moving such that a Doppler component is 

possible. After receiving the return, the long sequence is carefully re-arranged so that 

each return from every pulse is aligned according to same delay and stored in a 

measurement matrix. By taking fast-Fourier transform (FFT) in Doppler direction, signal 

energy converges into corresponding Doppler bins (indices) due to FFT’s circular shift 

property. The magnitude of the measurement matrix after the FFT operation is considered 

the range Doppler map since it reveals the characteristic of moving target’s delay (which 

corresponds to range) and Doppler shift (which corresponds to velocity). The multiple-

pulse wideband waveform, rectangular waveform, and eigenwaveform are utilized as the 

transmit waveforms here. A peak value may be used to detect a target’s position (delay) 

and Doppler spread. Of course, the RDM can detect multiple targets with different speeds 

and distances and ambiguities can be avoided via discussion from earlier sections. 

Moreover, when multiple pulses are used, it can be shown that the detection 

probability is also a function of the number pulses ( L ). The detection probability with L  

pulses with the use of eigenwaveform is be shown to be 
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The gain due to L  (10 log L  in dB) is also true for other waveforms as shown in Fig. 24. 

In Fig. 24, we illustrate the Target 1 detection performance curves for the three 

waveforms as a function of increasing L . As expected, increasing L  increases detection 

probability. 
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Now, we generate the RDM (3-D maps) where we utilize Target 1 and illuminate 

it with the wideband, rectangular (ToTR = 0.64), and eigenwaveform (duty cycle td =

310− ) where 31L =  as a function of increasing SNR (0, 3, 10 dB) given a fixed TNR = 0 

dB. We illustrate in Fig. 25 the 3-D RDMs of these various waveforms as a function of 

increasing sE NR  (return energy to noise ratio). In this scenario, the target is located at 

range (delay) = 560 with normalized Doppler of 0.0968df = . Notice that the target is not 

very visible for SNR = 0 dB with the use of rectangular waveform. For the same SNR, 

there is a small peak corresponding to Target 1 with the use of the wideband waveform. 

Notice however that the Target 1 is clearly discernable with SNR=0 dB when the 

eigenwaveform is used. Increasing SNR enhances the peaks for all waveforms with the 

eigenwaveform clearly yielding the largest peak. 

RDMs are usually presented as 2-D maps (magnitude or squared-magnitude). In 

this scenario, we place two targets (Target 1 type) in two different range-Doppler bins. 

Again we use the wideband, rectangular (ToTR = 0.64), and eigenwaveform ( td = 310− ) 

where 31L =  as a function of increasing SNR (0, 3, 10 dB) given a fixed TNR = 0dB. 

The RDMs are illustrated in Fig. 26. In this scenario, the targets are located at range 

(delay) = 450 with normalized Doppler of ( 1 0.1613df = ) and range (delay) = 750 with 

normalized Doppler of ( 2 0.1290df = − ). Again, notice that the targets are not very 

discernable for SNR = 0 dB with the use of rectangular waveform. For the same SNR, 

there is a some faint possibility that one of the targets maybe detected with the use 

wideband waveform. Both targets are clearly pronounced when the eigenwaveform is 

used even with SNR = 0 dB. Increasing SNR enhances the target bins in the RDMs for all 

waveforms with the eigenwaveform clearly yielding the brightest target bins. 
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Figure 24.  Performance comparison: wideband waveform, rectangular waveform and 

eigenwaveform with various multiple-pulses transmission (L = 3, 5, 10). 

 
Figure 25.  Target 1 3-D view RDM comparison for SNR = (0 dB, 3 dB, 10 dB), and 

TNR = 0 dB. The target is located at range (delay) = 560 with Doppler shift of df  
= 0.0968. Left panels: wideband waveform, middle panels: rectangular waveform, 

and right panels: eigenwaveform. 
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Figure 26.  Target 1 RDM comparison for SNR = (0 dB, 3 dB, 10 dB), and TNR = 0 dB. 

The targets are located at range (delay) = 450 with Doppler shift of 1df  = 0.1613 
and range (delay) = 750 with Doppler shift of 2df  = 0.1290. Left panels: 

wideband waveform, middle panels: rectangular waveform, and right panels: 
eigenwaveform. 
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VII. PROBABILITY WEIGHTED EIGENWAVEFORMS (PWE) 
FOR TARGET RECOGNITION 

A closed-loop radar which uses adaptive waveforms is used in [2, 8] for target 

recognition. Among these waveforms, the PWE scheme introduced in [1] has shown the 

best promise as far as classification performance as well as low mean number of 

transmissions. Here we investigate maximum a posteri PWE (MAP-PWE). Based on the 

decision statistics, we propose an improved un-biased version called match-filtered PWE 

(MF-PWE). Moreover, we also propose two-stage PWE (TS-PWE) which is based on 

likelihood and waveform weighting that effectively works well in low SNR. We describe 

the closed-loop radar operation involving these waveforms and summarize the radar 

operational steps in a flow diagram. We perform Monte Carlo simulations to show the 

identification performance comparisons.  

A. ADAPTIVE WAVEFORMS, LIKELIHOOD UPDATES, AND COGNITIVE 
RADAR PLATFORM INTRODUCTION 

What makes a radar closed-loop is the use of probability or likelihood updates 

into forming adaptive waveforms. Here we consider the use of closed loop or cognitive 

radar platform for target recognition which had been extensively used in [1, 2, and 8]. 

Since the notion of adaptive waveforms, probability/likelihood updates and waveform 

weighting are so integrated in the closed-loop radar, we will introduce our first adaptive 

waveform MAP-PWE and the cognitive radar operations simultaneously in the following 

section. 

1. MAP-PWE  

Consider a target identification problem in which one of M  possible targets is 

present. Each target hypothesis is characterized by its impulse response , 1, 2,...j j M=h  

which are assumed a priori.  

Assuming all targets are of length n  and assuming there is one target present, the 

detection hypotheses are 
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where the jH  is the 2 n -by- n  convolution matrix of target j  and w  is the complex-

valued AWGN vector with a sample variance of 2σ . The correlation matrix of w  is 

simply 2Iσ  and we assume σ  to be one for simplicity. Each time the radar transmits a 

waveform x , a noise-corrupted version of the reflected target echo is received as y . 

In PWE, the transmit signal is the linear combination of each unit energy 

eigenvector jq  each weighted by jw  where jw  is the weight distribution for the thj  

hypothesis calculated from prior received signal. The energy constraint of transmit signal 

xE  in the end actually dictates the energy weight distribution of each eigenwaveform. 

However, to simplify the procedure it is best to simply add the weights to sum up to 1 (as 

an intermediate normalization step). In other words,  

 
1

1,
M

j
j

w
=

=∑  (56) 

and  
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where x  is the direct combination result of all eigenvector jq . However, x  may not be 

unit-energy after summation since the eigenwaveforms themselves come from different 

targets and may not be orthogonal. Although the energy may be close to 1, it still needs to 

be normalized such that the energy constraint can easily be factored in i.e., 

 ,xx
x

xE
E

=  (58) 

where xE  is the energy of transmit signal and xE  is the energy of x  in (57).  
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Now, we discuss how the waveform weights are calculated. Let | ( )j if y  be the 

probability density or likelihood function of the thj  hypothesis given thi  target is the 

present target assuming additive white Gaussian noise. Recalling 1σ =  for convenience, 

the probability density or likelihood function is given by 

 
| exp[ ( ) ( )]

exp[ ]

exp[ 2Re( ) ],

( )y y s y s

y y s y y s s s

y y s y s s

H
j i j j

H H H H
j j j j

H H H
j j j

f β

β

β

− − −

= − + + −

= − + −

=

 (59) 

where  

 1
nβ

π
=  (60) 

is the constant in front of the Gaussian distribution. 

Let 1
jw  be the initial waveform weight for each hypothesis as dictated by (57). If 

there is no a priori information available as to the likelihood of each hypothesis, then 

initially we can assume them to be equally likely i.e., 1 1/jw M= . Let ( )P
jf y  be the 

likelihood function from thP  return signal, then the waveform weights 1P
jw +  are updated 

by the likelihood values from the latest thP  return signal. In other words, for multiple 

illumination the waveform weights are updated as: 
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 (61) 

where P
jf  is the calculated likelihood value after thP  transmission and the weight 1P

jw + is 

the weight distribution corresponding to the thj  hypothesis for the ( 1)thP +  transmission 

(or P  updates) while Pα  ensures unity weight summation as dictated by (56) in each 

transmission. In other words, 1P
jw +  is the waveform weight of thj  eigenwaveform in (57).  
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It can be shown that by substituting i= +y H x w  and j j=s H x  into (59), the 

generalized formula of the likelihood function for thj  hypothesis given thi  target is 

| exp[ 2 Re((

,

) )

]

x x H H x x H w w H x w w x H H x x H w

x H H x

H H H H H H H H H H
j i i i i i j i j

H H
j j

f β − − − − + +

−

=

 (62) 

and the first moment (mean) of incorrect hypotheses (where i j≠ ) is 

 | exp[ 2R[ ( ] ],) e( )x x H H x x R xH H H
j i j i jE f β η + −=  (63) 

where jR is the discrete autocorrelation function corresponding to thj  hypothesis and η  

is defined as 

 [ ],H Hx H H x w wH
i i Eη = − −  (64) 

which is a constant term for all hypotheses. 

On the other hand, the first moment (mean) of correct hypothesis where i j=  

becomes 
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It is clear from (65) that the argument inside the exponential of the correct hypothesis 

( i j= ) is greater than all incorrect hypotheses in (63) since the second term in (65) is a 

fully-correlated match (autocorrelation matrix H
i iH H ) while (63) involves cross-target 

correlation which is clearly drives it to a lower value. Thus, the likelihood of correct 

hypothesis has higher value which leads to higher weight of iw  in next waveform 

formation in (61). Here we use iw  since j i=  for the correct hypothesis. Therefore, the 

waveform weight updating procedure leads to likely identification until a desired 

probability threshold is met or at the end of desired number of transmissions. This is how 

the MAP-PWE cognitively approaches the correct hypothesis during its operation. 
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MAP-PWE has been shown to be a very effective adaptive waveform formation 

scheme for non-moving target identification in this closed-loop radar platform. However, 

when comparing (63) and (65), the last terms cause undesirable effect of subtracting a 

higher value in the correct hypothesis than in the incorrect hypotheses. To illustrate this 

effect, consider the case when the updating procedure finally homes in on the target 

present (after a few iterations). In other words, when 1iw ≈  and max,i≈x q , the last term 

of incorrect thj  hypothesis in (63) is an insignificant value since max,i=x q  is not highly 

correlated to any target j  while correct thi  hypothesis subtracts a maximum value of 

max,i xEλ . The biased subtraction of this term in the most likely hypothesis affects the 

identification performance. 

To illustrate the biased effect in MAP-PWE, consider the noise only scenario 

where =y w  and j j=s H x . It can be shown from (59) that the first moment of likelihood 

function for all hypotheses ( )jf x  is 

 [ ] exp[ [ ]( ) ] exp[ [ ] ].y w w x H H x w w x R xH H H H H
j j jjE f E Eβ β= − − = − −  (66) 

Since x  is the combination of all eigenwaveforms with different weight jw , we can 

further derive (66) in terms of eigenvalues and waveform weights, that is 
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Due to the fully-correlated match (autocorrelation jR ) inside the argument of the 

exponential and after a few iterations, the waveform weight updating procedure 

approaches the thj target hypothesis of higher eigenvalue jλ . The thj  maximum 

eigenvector jq  dominates the ( )jf x , that is   
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Since the mean in (68) is different for each hypothesis, the waveform weights dictated by 

(61) and (68) will have unequal weights after each update. For the noise-only case 

scenario that we are currently discussing, no eigenwaveform should be favored since a 

target is not present. Thus, the probability weight updating procedure under noise only 

scenario is biased (a function of target response matrix’s eigenvalue) and the 

identification performance when a target is truly present suffers from the various 

eigenvalues in (68). In fact, the biasing effect becomes worse when energy of x  increases 

(i.e., when the transmit energy of the PWE waveform is increased). To illustrate this 

point, we perform Monte Carlo (MC) trials where there are four target hypotheses where 

we assume initial probability of 0.25 for each hypothesis but under the noise only 

scenario. Since there is not a target present, we only receive noise in the measured signal 

and calculate the 4 likelihood and waveform weights. We perform 10000 MC trials in 

which to average over. In Fig. 27a, we show the waveform weight updates as a function 

of increasing transmission energy using MAP-PWE. At low transmit energy, the average 

updated waveform weight remains at 0.25 which is obviously desired. Notice however 

that as transmission energy is increased, the updated weights diverge where one 

hypothesis seems to be favored than others (which is clearly unwanted). 

 
Figure 27.  Mean of target probability updates versus transmission energy under noise 

only scenario assuming unity noise energy. (a)MAP-PWE. (b)MF-PWE. 
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2. MF-PWE 

It is our desire to improve MAP-PWE. Clearly, one way is to remove the 

unnecessary bias terms in the likelihood functions. In reality, removing bias terms lead to 

a receiver configuration that is equivalent to using a bank of matched filters. Removing 

the constant terms in (59) lead to a modified likelihood function given by 

 | exp[2Re( )],( )y s yH
j i jf β=  (69) 

where β  now here is a constant that ensures the waveform weights sum up to 1 as 

dictated by (56). By substituting i= +y H x w  and j j=s H x  into (69) where it is clear 

why the current technique is to be called matched-filter PWE (MF-PWE), (69) becomes  

 | exp[2Re( )]) .( H H H H
j i j i jf β= +y x H H x x H w  

It can be shown the mean of likelihood for the incorrect hypotheses given thi  target is 

given by 
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and the mean of the likelihood for the correct hypothesis probability ( j i= ) is 
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Notice that from (71) that the argument of the exponential of correct hypothesis ( i j= ) is 

ensured to be greater than all incorrect hypotheses in (70) since the fully-correlated match 

term in (71) surpasses the  cross-target correlation matrix ij
HH H  in (70). Thus, the higher 

value of likelihood for the correct hypothesis leads to higher waveform weight towards 

the correct target. 

Moreover, after few updates, when the weight is mainly distributed to the 

eigenwaveform corresponding to the correct hypothesis, the expression in (71) is 

dominated by 

 59 



 |
2 2[ ( )] exp[ ( exp[ ],)]y q R qHx x

i i i i i i
x x

i
E EE f w

E E
β β λ≈ =  (72) 

and the means of the likelihoods of the incorrect hypotheses are given by  

 { }|
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x
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E
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which leads to a much smaller value than (72). 

We now compare MAP-PWE and MF-PWE under noise-only scenario. The 

modified likelihood ( )jf y  is  

 exp[2Re( )] exp[( 2Re( )) ]H H H
j j jf β β= =y s y x H w  (73) 

and the mean is 

 exp[2Re[ ( ]) ( [ ]) .] H H
j jE f Eβ β= =y x H w  (74) 

Clearly, the means of the likelihood functions are the same under the noise-only 

scenario. Since we sum up the likelihoods and normalize to 1 to produce the waveform 

weights, each eigenwaveform will have equal weights i.e., no target is favored when a 

target is not present. 

Lastly, the waveform weight update rule remains the same, i.e., 
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 (75) 

where P
if  is the calculated likelihood weight corresponding to the thi  hypothesis for the 

thP  transmission while Pα  ensures unity weight summation in each transmission. 

Comparing (68) with (74) for noise-only scenario, it is obvious that MF-PWE 

provides constant means for all hypotheses no matter how large the eigenvalues are. 

Thus, the MF-PWE is an unbiased target identification scheme for extended targets 
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where only the correct target can make significant likelihood increase without the 

degrading bias terms. Also, MF-PWE reduces the complexity of calculation used by 

MAP-PWE by simply using the matched filter bank in (69).  

The performance comparison of MAP-PWE and MF-PWE vs various 

transmission numbers are shown in Fig. 28 and Fig. 29 via 710 Monte Carlo experiments 

where one true target is present from four hypotheses. When the number of transmissions 

is fixed, the hypothesis with the largest updated likelihood is decided to be the correct 

hypothesis (whether true or not). It is clear in Fig. 28 that MF-PWE has the better 

identification performance than MAP-PWE for various numbers of fixed transmissions. It 

is also clear in Fig. 29 that MF-PWE has lower required mean number of transmissions to 

reach a desired probability threshold (for Fig. 29 the threshold is set as 0.95). In 

conclusion, MF-PWE performs better than MAP-PWE and wideband waveform as a CR 

adaptive waveform in terms of target identification and required number of transmissions. 

 
Figure 28.  Performance comparison: MAP-PWE and MF-PWE with multiple 

transmissions assuming unity noise energy. 
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Figure 29.  Average or mean number of transmit (probability threshold = 0.95) 

comparison assuming unity noise energy. 

B. TWO-STAGE PWE FOR LOW SNR 

The MAP-PWE and MF-PWE closed-loop radar adaptive waveform techniques 

operates on the previous likelihood and latest likelihood update which is primarily based 

on Bayes’ theorem. We propose a new update process that uses the ratio of the latest 

calculated likelihood to the previous-to-last calculated likelihood. In low SNR, the noise 

realizations are large (compared to actual target return) which may cause an incorrect 

hypothesis to have a large likelihood update. When an incorrect hypothesis takes on a 

large likelihood update, it is hard to reduce the next waveform weight since the previous 

update is incorporated into the actual waveform weight. In other words, if a receiver were 

to stop to make a decision and the incorrect hypothesis happens to have the largest 

likelihood, then the receiver will choose that incorrect hypothesis. The key idea is to 

mitigate large swings on the likelihood updates (in the case of low SNRs) where large 

noise realizations produce volatility to the waveform weights (which can nullify the 

beneficial improvements of multiple transmissions). 
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 In this section, we propose a heuristic two-stage PWE method (TS-PWE) which 

is specifically designed to improve the classification performance over the MAP-PWE 

and MF-PWE in low SNR by using the previous-to-last and latest likelihood ratios in a 

specific way. To describe the waveform technique, let us briefly go back the closed-loop 

radar system that we have been using and see how the two-stage PWE is incorporated. 

The steps are:  

1. Assuming M  possible extended targets, generate the normalized 

eigenwaveform for each target hypothesis. Scale each eigenwaveform with the square-

root of the initial waveform weight assigned to each hypothesis and then form the first 

PWE-based waveform. 

2. After illumination and reception of target return, calculate the likelihood 

according to (69). If this is the first transmission, then calculate the second set of 

waveform weights via the 2
iw  in (75). Our goal is to use the latest and previous weight 

pairs to generate the next set of waveform weights for the next transmission. 

3. For the second and all the rest transmissions, upon the reception of target 

return, pick the hypothesis with the highest weight (from the latest or last weight set) and 

calculate the ratio of weight change of this very hypothesis as given by 
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1 ( 1)

p

p
wr

w −=  

where p  denotes the latest weight and 1p − denotes the weight previous to last. 

4. Pick the latest and 1p −  (previous-to-last) likelihoods from the same 

hypothesis and calculate the likelihood ratio as given by: 
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p

p
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where f  is from (69). 

5. Multiply the latest ( )pf  by the corrective coefficient which is the ratio of 2r  

over 1r  to form the tempered or modified likelihood as given by 
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6. Calculate the new weight using (61) with the modified likelihood. Since the 

weights sum up to 1, the weights of the other eigenwaveforms corresponding to other 

hypotheses set are automatically updated. In other words, the excess weight from the 

hypothesis with the largest (last) likelihood is re-distributed to the other hypotheses. 

The key idea in improving PWE waveform in low SNR is to use the previous and 

latest weights of the hypothesis with the largest current likelihood update in forming the 

next waveform weights. The result is the tempering of the updates which swing 

dynamically due to large noise realizations. The performance gain of this technique in 

low SNR over MAP-PWE and MF-PWE are significant. The flow diagram of the TS-

PWE procedure is summarized in Fig. 30. 

Again, we set up a Monte Carlo target recognition experiment using various PWE 

waveforms. In Fig. 31, mean number of illuminations performance vs transmit energy is 

shown for various waveforms. It is interesting to note that the TS-PWE is better than 

other waveforms in low transmit energy (less than -8 dB). In Fig. 32, we show the 

identification performance results of the MC experiment as a function of transmit energy 

while varying the number of transmissions (or updates). Since MF-PWE and TS-PWE in 

Fig. 31, we utilize these two in Fig. 32. Notice that TS-PWE outperforms MF-PWE. 
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Figure 30.  Operational flow diagram for the TS-PWE scheme with a closed-loop radar. 
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Flow diagram/procedural steps for the TS-PWE 
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Figure 31.  Mean number of illuminations as a function of (received) transmit energy for 

various adaptive waveforms assuming unity noise energy. 

 
Figure 32.  TS-PWE vs MF-PWE identification performance comparison as 

parameterized by the number of updates (or number of transmissions) assuming 
unity noise energy. 
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In summary, the region of low SNR is usually the most interesting in any 

detection problem whether it is radar, communications, etc. This is because the 

probability of detection is a function of SNR. The lower the SNR means the lower the 

probability of detection where there is usually very little can be done except the obvious 

which is to either increase signal energy or lower noise power. Here, although both MF-

PWE and MAP-PWE are superior to various waveforms in improving probability of 

detection at low SNR, we are still able to produce more gain with TS-PWE at low SNR. 

The use of both previous-to-last and latest likelihoods allows for the TS-PWE scheme to 

temper volatile updates due to large noise realizations. As such, TS-PWE performance 

improvement in the low SNR region is significant. 
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VIII. MULTIPLE TARGET IDENTIFICATION AND RANGE-
DOPPLER LOCATION 

It is our goal to simultaneously identify the target type, determine how many 

targets in each type and correctly locate the ranges and Doppler for multiple moving 

targets. Range-Doppler via ambiguity function for point targets is well covered in the 

literature. A good starting point is [4]. In this section, we utilize range-Doppler map 

(RDM) to correctly locate an extended target. We integrate RDM in our CR platform to 

simultaneously identify a target from a set of possibilities with the use of our adaptive 

PWE waveforms. We investigate different scenarios and finally form our comprehensive 

scheme. 

A. TWO TARGETS OF SAME TYPE SCENARIO 

In this section, the goal is to jointly locate (in range and Doppler) and identify two 

targets of same type with arbitrary speeds and delays (range). Other complicated 

scenarios will ensue in later sections. In Fig. 33 we illustrate the two present extended 

targets in RDM where a small amount of noise is added. The top panel is a three-

dimensional RDM. The bottom panel is a two-dimensional RDM (which is the 

conventional way of illustrating RDM). For simplicity and brevity, we choose sample 

delay (for range) and normalized frequency for Doppler (for velocity). Both parameters 

can easily be converted to actual range and velocity from the RDM. The overall 

probability of correctly locating an extended target in range-and-Doppler and identifying 

target type is clearly a function of received signal-to-noise ratio, number of transmissions 

L , PWE schemes and the target responses themselves via maximum target eigenvalues. 

In this scenario, we assume that two present targets are of the same type. Since we 

already assumed that there are two targets present, our problem therefore is to figure out 

where these two targets are in range-and-Doppler and identify the target type from 

various possibilities simultaneously. In practice, a priori assumption may come from 

other sensors or some intelligence information. To perform integrated range-and-Doppler 

location and target type identification given they are of same type, we utilize our closed-

loop update procedure with the use of PWE waveforms. With the previous identification 
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problem where transmission number is fixed, the target with the largest weight update is 

chosen to be the detected hypothesis. Since we know that there are two targets, we 

choose the hypothesis with the largest weight updates after a fixed number of 

transmissions. 

We now describe the scenario. Assuming 4M =  possible extended target types, 

we form the normalized eigenwaveform for each target hypothesis and scale each 

eigenwaveform with the square-root of the initial waveform weight assigned to each 

target and then form the first PWE-based waveform (as previously when we assumed the 

target to be static). The difference here is that we now send a series of pulses R times (in 

this work, R =31), since we are interested in forming RDMs. For the received return from 

every set of R  pulses (recall that there are L  transmissions, where there are R  pulses in 

each transmission), M matched filters from all possible extended targets are applied to 

form the Doppler filter banks to form M  RDMs. For fair comparison, we set unity 

energy of each transmission ( R  pulses). Assuming N  is the length of target impulse 

response, the matched filtered sequence takes on a length of 4 3N −  for any target 

present. If the SNR is sufficient, the two highest magnitudes in the RDM may indicate 

the range-Doppler locations of the two targets. Due to noise realization, one magnitude is 

slightly higher than the other. We pick the 4 3N −  sequence corresponding to the larger 

one to use for our likelihood update calculations. To properly scale the next PWE 

waveform weights, we normalize the sum of the likelihood to one as usual and form the 

waveform weights such that the energy constraint is accommodated (58). We continue 

until we send the fixed number of transmission L . We choose the target type with the 

largest likelihood value which allows us to pick the RDM out of the four possible RDMs. 

Since there are two targets, we pick the two range-Doppler cells with the largest 

magnitudes. Thus, we have jointly decided the target type and located the range-Doppler 

cells where the two targets may be located. The illustration of RDMs updates for each 

target type is shown in Fig. 33 to Fig. 36 where the two targets can be easily determined 

in the “decided” RDM after five updates in Fig. 36. Here, we use MF-PWE as the 

designated PWE scheme. 
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Figure 33.  Range Doppler map of two targets of the same type (some noise added). 

 
Figure 34.  Four candidate RDMs for four possible target types (where two targets of the 

same type are present) with PWE after one transmission (no update). 
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Figure 35.  Four candidate RDMs for four possible target types (where two targets of the 

same type are present) with PWE after three transmissions (two updates). 

 
Figure 36.  Four candidate RDMs for four possible target types (where two targets of the 

same type are present) with PWE after six transmissions (five updates). 
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In Fig. 37, the probability of identification ( iP  which is the probability of 

correctly determining target type), dP  which is the probability of correctly determining 

the range-Doppler location, and the overall or joint probability ( gP ) with one 

transmission (no update) and six transmissions (five updates) using MF-PWE scheme are 

shown via MC experiments. The overall probability is the probability that the range-

Doppler location and target type are both correct. In other words, if we correctly 

determined the target type and not correctly determined the correct range-Doppler cell 

(despite the fact that the actual RDM peak is in an adjacent cell), we still count this 

against the overall probability. Notice also that the probability of correct identification is 

better than the probability of correctly determining the range-Doppler locations. This is 

because in our experiment, there are only four possible target types while there are 

numerous range-Doppler cells. We can improve gP  by increasing the range-Doppler area 

(number of cells) in which to decide where the target may be located. For the moment, 

this is outside the scope of our study but definitely is an interesting one to tackle at a later 

time. 

It is also clear from Fig. 37 that the overall performance (bottom panel) is jointly 

affected by probability of identification and probability of correctly determining the 

range and Doppler location (upper and middle panels). From transmit energy of 4−  to 0 

dB energy units which lead to almost perfect identification percentage ( 1iP = ), gP  is 

almost exactly the same as dP . Recall that, we put a very strict definition on dP , i.e., we 

only declare range-Doppler detection when the matched filtered peak is truly located 

where the true target peak would be (although, the peak may simply be in the adjacent 

range-Doppler) cell. It is also important to notice that more transmissions help both 

identification rate as well as overall performances. 
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Figure 37.  Probability of correctly determining target type, probability of correctly 

determining the range-Doppler location, and the overall performance of correctly 
determining target type and range-Doppler location using MF-PWE with two 

targets of same type. 

In Fig. 38, we show the comparison of identification probability ( iP ) of six 

updates and ten updates with various PWE schemes for the two moving extended targets 

(of same type scenario). It is obvious that iP  is function of both PWE method and 

number of transmissions (or update number). It is clear that TS-PWE has the best 

performance in terms of probability of correct identification especially in the low-SNR 

area. Since MF-PWE and TS-PWE are again the best performers, we utilize both in Fig. 

39. In Fig. 39, the overall probability comparison between MF-PWE and TS-PWE are 

shown for three transmissions and six transmissions. Notice that for three transmissions, 

TS-PWE performs slightly lower than MF-PWE. However, at six transmissions, TS-PWE 

is better. This means that although TS-PWE is better than MF-PWE at target 

identification, it is not always better than MF-PWE in probability of correctly 

determining range-Doppler location. Higher transmission number is needed for that to 

happen. 
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Figure 38.  Identification probability comparison of six updates and ten updates of various 

PWE schemes assuming unity noise energy for two targets of same type scenario. 

 
Figure 39.  Probability comparison of correctly determining targets type and range-

Doppler location of no update, one update, two updates, and five updates vs MF-
PWE and TS-PWE schemes assuming unity noise energy with two targets of 

same type. 
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In summary, we slightly modified the CR platform to adapt the assumption of two 

target of same type and form a platform that can correctly identify the target and correctly 

indicate the range-Doppler location or cell for moving extended targets. We used the 

three PWE-based waveforms all of which are effective in terms of three probabilities 

mentioned above. TS-PWE is the most effective in terms of target recognition 

specifically in low SNR. 

B. UNKNOWN NUMBER OF TARGETS (OF THE SAME TYPE) 

In this section, we do not assume the number of targets present but since this is a 

target recognition problem we will generate at least one target present in our MC 

experiments. If there are multiple targets, we assume they are of the same type in this 

section. Other complicated scenarios are tackled in later sections. We will utilize MF-

PWE and TS-PWE schemes. Here, we modify the receiver to incorporate thresholds 

dictated by a given false alarm since a true detection problem is added into the mix, i.e., 

the number of targets present is not known (but we at least assume one). As before, the 

hypothesis with the largest updated waveform weight is deemed to be the true target 

hypothesis. The sequences containing highest magnitudes in the chosen RDM may be 

retrieved for target range and Doppler location. The question here is to determine how 

many targets there are in latest updated RDM and what is the proper threshold to be used 

in locating targets’ range and Doppler. 

We assume targets are of length N  (in this work, 31N = ) and the length of test 

sequence y  containing peak value in RDM is 4 3N − . In order to form each range 

Doppler map, R  pulses are transmitted (in this work, 31R = ). The iH  is the 2 N -by- N  

convolution matrix of target type i  and w  is the complex-valued AWGN vector. Each 

time the radar transmits a waveform x , a noise-corrupted version of the reflected target 

echo is received. Since we have four possible (i.e., different) targets, we use the four 

different matched filters as usual for MF-PWE. The | ( )j if y  which is the likelihood of thj  

hypothesis given thi  target is of this form 

 | exp[2Re( ) ( )]H
j i jf β=y s y  (76) 
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where we can substitute i= +y H x w  and j j=s H x  into (76).  

Before we can determine range-Doppler location, we have to consider the 

problem of detection for the entire range-Doppler map since we do not know the number 

of targets. The detection hypotheses are 
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 (77) 

It can be shown that the natural log likelihood for the null hypotheses given thi  

target is of normal distribution of the form 

 0|ln[ ( )] ln 2Re( ),y s wH
i if β= +  (78) 

and the hypotheses 1H  is 

 1|ln[ ( )] ln 2Re( ).y x H H x x H wH H H H
i i i i if β= + +  (79) 

It can be shown that the likelihood ratio threshold r  for given probability of false 

alarm FAP  and AWGN of sample variance 2
wσ  is of the form 

 2 12 ( ) ln .s w FAr E Q Pσ β−= +  (80) 

Thus, the probability of a target being in a specific range and Doppler location for target 

type i  is 
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where the transmission number L  is incorporated and R i  is the autocorrelation matrix of 

thi target response. 
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It is clear from a previous chapter that sE  is not unique. The value of DP  is 

affected by transmit signal energy and weights for each eigenvector, target response 

energy, and maximum eigenvalue. If the PWE update process converges to the true target 

type and mostly distributes the weight to target type i  (true target), the detection 

probability for each range-Doppler cell given correct target type identification is shown 

in (81). However, if the procedure makes the wrong target type identification (which 

means most energy is not in the thi  target type), the probability of locating the correct 

range-Doppler cell will tend to be very low as shown in Fig. 40 where target 1 is the 

correct target type. Wrong identification also leads to poor probability of locating range-

Doppler location.  

It can be shown that when correct target type identification is made and all 

transmit energy is distributed to correct target type, the equation (81) can be modified as  
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where hE is the energy of target response and is assumed to be unit energy in this section.  
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Figure 40.  Probability of locating correct range and Doppler given target type 

identification and probability of false alarm ( 0.1FAP = ) assuming unity noise 
energy where type 1 is the correct hypothesis. 

 
Figure 41.  Probability of locating correct range and Doppler given correct/incorrect 

target type identification and various probability of false alarm assuming unity 
noise energy. 
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Also, in Fig. 41, it shows clearly that the probability of correctly locating range 

and Doppler is intimately tied to the probability of target type identification. The plots in 

Fig. 41 re-enforces the fact that once a wrong identification is made then the probability 

of correctly locating the range-Doppler cell of a target becomes much lower.  

Again we set up Monte Carlo experiments where we randomly generate the 

number of targets and the range-Doppler locations of those targets. In this particular 

experiment we generate one, two, or three targets (of the same type) while assigning 

range-Doppler locations (randomly) in each experiment. In our joint recognition-

detection procedure, recall that we identify the targets by choosing the RDM. Again since 

we do not know the number of targets, we have to perform detection via threshold in the 

entire RDM. The threshold is based on the PFA given a target type from (80). Once 

targets are “detected,” then we try to determine the targets’ range-Doppler locations. 

Since this is a detection problem, the threshold used dictates the actual dP . Using MF-

PWE, we calculate the “strict” overall probability gP  (which is correct identification, 

correct number of targets and correct range-Doppler locations all at the same time) as a 

function of transmit energy. Notice that gP  is tied to PFA (since dP  is tied to PFA). It is 

clear that in Fig. 42 that the threshold (calculated from probability of false alarm) and the 

number of updates affect overall probability. 
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Figure 42.  Joint probability of locating correct ranges, Doppler and target types vs 

various MF-PWE updates numbers given probability of false alarm assuming 
unity noise energy. 

C. TWO TARGETS OF DIFFERENT TYPES (SCENARIO) 

In this section, we make the problem a little more interesting. Here we allow for 

different target types to be in the scene. For now, let us limit the number of targets to two 

(and then we’ll consider more in a later section). Assuming the number of targets (here 

two) removes the detection component of the signal processing since we already know 

the number of targets. This is akin to the “two targets of the same type scenario.” 

However, in this problem, we have two different targets.  

We may consider the problem that of a multiple hypothesis testing (MHT) 

problem. Unfortunately, in practice when there are more possible targets to consider and 

when there are more scenarios to consider (e.g., ten targets total, two targets are type 1, 2 
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targets are type 2, one target is type 3, etc.), then the number of hypotheses increase 

dramatically due to the combinatorial implications to the number of hypotheses. If we are 

to field a practical cognitive radar system, then its computing resource has to be 

reasonable. As such, we will focus on how to update the waveform weights via the 

likelihoods corresponding to the original four hypotheses in the target recognition 

problem. This reasonably makes sense. For example, if there are two different target 

types (say type 1 and type 3) in four, it would make sense that after a few transmissions 

that the 1w and 3w  approach 0.5 such that the overall waveform favors those two types. 

We illustrate the procedure in Fig. 43. Amazingly, there’s very little difference 

between this procedure to that of “two targets of the same type scenario.” Here, 

effectively the only difference is that we choose two RDMs in the end. Also, the 

waveform weights will be distributed to the two target types (about 0.5 each when 

homing in on the two targets).  

We conduct an experiment where two targets are present (type 1 and type 4) using 

the procedure in Fig. 43. We show the 4 RDMs after the first transmission (no waveform 

update) in Fig. 44. Notice that it is difficult to tell where the targets are. Now we show 

what happens to the RDM after seven transmissions in Fig. 45. Notice that the two peaks 

in the two RDMs corresponding to targets type 1 and type 4. Clearly, the procedure can 

correctly identify two targets and correctly determine range-Doppler locations. 
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Figure 43.  Flow diagram/procedural steps for two different target types (scenario). 
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Figure 44.  No update: RDMs of two targets from different types after M matched filters 

(M = 4). 

 
Figure 45.  Six updates: RDMs of two targets from different types after M matched filters 

(M = 4). 
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Via Monte Carlo experiments, we illustrate the overall (or joint) probability of 

correctly identifying (both target present) and their range-Doppler locations in Fig. 46 

with the use of MF-PWE and TS-PWE adaptive waveforms as a function of transmit 

energy while varying the number or transmissions (or updates). If we compare Fig. 39 

(same target type) and Fig. 46 (different target types), it is clear that performances are 

lower for Fig. 46. This is because the waveform weights are distributed between two 

targets (for different types) while the weight gets distributed mostly to one target (for 

same target type), which seems intuitive. 

 
Figure 46.  Overall probability of identification and location for two targets of different 

types assuming unity noise energy. 

D. UNKNOWN NUMBER OF TARGETS AND DIFFERENT TYPES OF 
TARGETS 

In this section, we assume that the number of targets is not known or there could 

be multiple targets in the scenario. Moreover, there could be multiple target types. 

However, we assume that number of target types present is less than the possible target 

types. This assumption is from the intuition gained from the previous section. If there are 
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two out of four target types then the waveform weights for the two targets will eventually 

reach ~0.5. If there are three out of four, then the weights will eventually reach ~0.33. So 

for four out of four, then it will simply revert to 0.25 as intuition would dictate. Our goal 

is to utilize the insights gained from the three scenarios above to form a comprehensive 

scheme to simultaneously figure out the number of targets, identify target types, and 

determine the range-Doppler cells of these targets. 

 Let us start from a general scenario where there are M  possible target types 

(regardless of the number of targets present). If there is one target type, then the large or 

“high” waveform weight distribution goes to the correct target hypothesis (assuming 

enough SNR and enough transmissions) which approaches 1 as the platform homes in on 

the correct target type while the other (“low”) weights approach zero. For two target 

types, the “high” weights would approach 0.5 (assuming enough SNR and enough 

transmissions) and so on as so forth. As the number M  of the possible types increases, 

the weight differences between the group of “high” weights and the group of “low” 

weight decrease. In other words, it may be harder to correctly identify how many types of 

present targets there are as the number of present target types increases. It can be shown 

that the weight distribution for MF-PWE for M  possible target types where j  indicates 

targets that are not present and i  indicates targets that are present is the following:  
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where 1,2,..,k i=  is the index for present target type. In (82), recall that we assume 1σ =   

for simplicity.  

The first term in the denominator is 
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which is the summation of all likelihoods of present targets. And the second term is the 

summation of all likelihoods of targets not present and is given by 
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The TS-PWE weight distribution of M  possible types is more difficult to analyze 

because it involves the modified likelihood functions.  

In this final section, we also include the case where there may not be a target. In 

section B, although we assumed the number of targets to be unknown, we did assume in 

our experiments that at least one target is present. In other words, the set of algorithms in 

section B has to be modified to accommodate the general case when there is no target 

present. So here our strategy is to first figure out if there is a target or not in the scenario 

(after a number of transmissions/updates say L ). If there is, then we figure what target 

type with another set of transmission (same as before i.e., L ), and then another until our 

algorithm says there is no more target (type) present. To this end, the target identification 

procedure is modified by adding a user-defined threshold ψ  (a percentage) and 

comparing that to a formulated measured ψ  from the latest weight distribution. The 

threshold ψ  as in any threshold maybe adjusted to improve decision-making of the 

algorithm. The smaller the threshold ψ  is defined, the more sensitive or the more 

probable it is to identify and detect present targets.  

If there are M possible targets, then the “high” weights that will be approached 

by our likelihood update procedure is 100 / M . The measured ψ  is then 

 [ ] [ ],u vE w E wψ = −  (85) 

where uw  are the weights that are above the (100 / )M  and vw  are lower. If ψ  is less 

than the desired ψ , then the threshold is not crossed and thus a target type is not 

detected. If ψ  is greater than designated ψ , then we look for the target type that has the 
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highest weight and deem that to be a present target type. Since it is deemed present, the 

eigenwaveform corresponding to that target is now removed from the next L  number of 

transmissions. Now we normalize the remaining weights as dictated by (57, 61) and try to 

ascertain if there are remaining targets. In other words, we terminate the transmissions 

whenψ  is not greater than our threshold ψ .  

The full procedure for an experiment is summarized in Fig. 48 and enumerated 

here. 

1. Assuming M  possible extended targets, generate the normalized 

eigenwaveform for each target. Decide which PWE waveform is used and set the user-

defined threshold ψ . Scale each eigenwaveform with the square-root of the initial weight 

assigned to each hypothesis and then form the first PWE-based waveform. 

2. After the first return, calculate the likelihood according to the choice of PWE 

scheme. For MAP-PWE, use (59) and (69) is for MF-PWE and TS-PWE. Continue 

transmissions until the desired number of transmissions L  (or updates which is 1L − ). 

Note here, the TS-PWE requires at least 2 transmissions to implement.  

3. Update the weight distribution (75) and calculate the measured ψ  by (85).  

4. Decide if there is a target. Recall that target present is decided if the measured 

ψ  is greater than designated ψ . In our experiment, ψ  is set 10 percent. If ψ  is less than 

designated value, go to step 7.  

5. Determine the number of targets from the latest RDM of the decided type. This 

is performed by using the traditional threshold to the entire RDM. The threshold is 

calculated from (80) and is a function of probability of false alarm. 

6. Go back to step 1 and eliminate the accepted target type. That is, 1.M M= −

Also, we remove the likelihood for this target type in calculating the new waveform 

weights as dictated by (56, 57). 

7. If ψ  is less than ψ , decide there is no more target present and end the 

algorithm. 
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The overall (or joint) performance of correctly identifying the number of targets, 

target types, and locating range-Doppler cell for those targets is shown in Fig. 47. In this 

work, we use 4M = , 10ψ =  and FAP =0.1 to compare with various waveforms. Since our 

procedure identifies each target every L  number of transmission (or 1L −  updates), the 

plots are parameterized by number of updates per target type. It is obvious that both the 

MF-PWE and TS-PWE perform much better than wideband waveform as may be 

expected. The algorithm presented here (used in a CR platform) clearly can be used for 

the general problem of figuring out the number of target present, target type 

identification, and correctly locating range-Doppler cells of those targets. The flow 

diagram is summarized in Fig. 48. 

 
Figure 47.  Overall probability of identification and location for multiple targets of 

unknown types assuming unity noise energy ( 10ψ =  percent and FAP  = 0.1). 
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Figure 48.  Flow diagram/procedural steps of multiple targets identification and range-

Doppler location algorithm. 
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IX. CONCLUSION 

In this work, we set out to fulfill three main related objectives. The first is to 

investigate the application of eigenwaveform to ambiguity function with the intent of 

integrating PWE-based waveforms with range-Doppler techniques. The second objective 

is to extend PWE-based waveforms and produce other waveforms based on PWE for 

identification of extended targets. And finally, the third objective is to design an 

integrated scheme for the combined problem of range-Doppler location/detection with 

extended target type identification with the use of a closed-loop radar system employing 

adaptive waveforms. 

We successfully investigated eigenwaveform-based ambiguity functions with the 

use of three types of targets (oscillatory, non-oscillatory, and one based of a Boeing 

aircraft). We found that the AF properties (peak and volume) for eigenwaveforms to be 

much larger than that of traditional waveforms for point targets. Ambiguity function is 

the basis of range-Doppler map technique. Various range-Doppler trade-offs were made 

with the use of pulsed eigenwaveforms. 

We made improvements to the MAP-PWE by proposing two new PWE-based 

waveforms: MF-PWE and TS-PWE. Both waveforms performed well in terms of 

classification over MAP-PWE and classical wideband waveform. 

Ultimately, we used the PWE-based waveforms and range-Doppler techniques to 

form an integrated target identification and range-Doppler target location for moving 

extended targets. Our integrated scheme with the use of PWE-based waveforms worked 

well against the traditional wideband waveform in terms of joint probability of detecting 

targets, identifying target types, and determining range-Doppler locations for those 

targets. 
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APPENDIX 

In this appendix, we discuss how we implemented our own ambiguity function (in 

MATLAB) and how we verified our results. 

Let [ ]x i  be a complex-valued discrete-time signal that we would like to analyze 

with the ambiguity function. For compact presentation, x  is the vector notation of [ ]x i . 

N  is the length of vector x  which means [ ]x i  contains values only when 

0,1,2...( 1)i N= − . We will interchange these notations in the equation.  

The definition of discrete ambiguity function is given by  
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where nτ  is the delay index and dnf is the Doppler spread. Note here dnf = 0, 1, ..., 1N −

and 

 
2

e .
dn

dn

fjf N
NW

π
=  

In general the length of dnf  may be desired to be different from N . For now, we keep 

them the same and will expand it later.  

 Now, we keep the Doppler spread index dnf  fixed in (1) and vary the delay index 

for comparison. For compact presentation, only the χ function is listed out. The 

equations for positive nτ  are 
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And the equations for negative nτ  are 
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Interestingly, there is a systematic rule for the χ function for fixed Doppler 

spread index dnf . That is  
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where the K matrix is defined as   
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which is taking the reversed and conjugated x  and is lined up in a special format similar 

to the convolution matrix. And the f matrix is defined as 
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This is mathematical vector for fixed Doppler spread dnf .  

 For general ambiguity function in matrix form (which means all discrete Doppler 

spreads are considered), it is simply the expansion of (4) as in following: 
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where we expand the one fixed Doppler spread to all running indices by modifying f  

matrix to F matrix to include all the Doppler spread indices. The F matrix is given by 
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 (8) 

Therefore, the χ  matrix can be calculated from the matrix operation of  

 [ ] [ ](2 1)
[ ; ]

Nn dn N N M
fχ τ

− × ×
= ×K F  (9) 

and the ambiguity function is 2[ ; ]n dnfχ τ . 

It is necessary to add a constraint for M N≥  to maintain the integrity of 

ambiguity matrix. The physical interpretation is the number of Doppler components 

needs to be at least as much as the length of x . 
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The accuracy of operation is easy to check from definitions of zero-delay cut and 

zero-Doppler cut. By definition, the zero-delay cut is exactly the inverse Fourier 

transform of 2[ ]x i  and the zero-Doppler cut is the autocorrelation function of [ ]x i . It can 

be shown from the figure below where the zero-delay cut and zero-Doppler cut are 

exactly the same as the autocorrelation and IFFT results using Matlab’s own corr and fft 

functions. 

 

 
Figure 1: Comparison of ambiguity function cuts to theoretical function.   
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